Contents Online
Communications in Mathematical Sciences
Volume 16 (2018)
Number 5
Non-isothermal electrokinetics: energetic variational approach
Pages: 1451 – 1463
(Fast Communication)
DOI: https://dx.doi.org/10.4310/CMS.2018.v16.n5.a13
Authors
Abstract
Fluid dynamics accompanies with the entropy production, thus increases the local temperature, which plays an important role in charged systems, such as the ion channel in biological environment and electrodiffusion in capacitors/batteries. In this article, we propose a general framework to derive the transport equations with heat flow through the energetic variational approach. According to the first law of thermodynamics, the total energy is conserved and we can use the least action principle to derive the conservative forces. From the second law of thermodynamics, the entropy increases and the dissipative forces can be computed through the maximum dissipation principle. Combining these two laws, we then conclude with the force balance equations and a temperature equation. To emphasize, our method provides a self-consistent procedure to obtain the dynamical equations satisfying proper energy laws and it not only works for the charge systems but also for general systems.
Keywords
electrokinetics, electro-thermal motion, energetic variation approach
2010 Mathematics Subject Classification
35Q35, 35Q79, 76A02, 80A20
The research is partially supported by NSF grants DMS-1714401, DMS-1412005.
Received 24 October 2017
Received revised 28 April 2018
Accepted 28 April 2018
Published 19 December 2018