Communications in Mathematical Sciences

Volume 16 (2018)

Number 2

Well-posedness for the regularized intermediate long-wave equation

Pages: 523 – 535

DOI: https://dx.doi.org/10.4310/CMS.2018.v16.n2.a10

Authors

Janaina Schoeffel (Setor de Educação Profissional e Tecnológica, Universidade Federal do Paraná, Curitiba, PR, Brazil)

Ailin Ruiz de Zarate (Departamento de Matemática, Universidade Federal do Paraná, Curitiba, PR, Brazil)

Higidio Portillo Oquendo (Departamento de Matemática, Universidade Federal do Paraná, Curitiba, PR, Brazil)

Daniel G. Alfaro Vigo (Departamento de Ciência da Computação, Instituto de Matemática, Universidade Federal do Rio de Janeiro, RJ, Brazil)

César J. Niche (Departamento de Matemática Aplicada, Instituto de Matemática, Universidade Federal do Rio de Janeiro, RJ, Brazil)

Abstract

In this work we prove local and global well-posedness of the Cauchy problem of the regularized intermediate long-wave (rILW) equation in periodic and nonperiodic Sobolev spaces.

Keywords

internal waves, dispersive models, regularized intermediate long-wave equation, wellposedness for PDEs, pseudodifferential operators

2010 Mathematics Subject Classification

35S10, 37L50, 76B03, 76B55

Janaina Schoeffel was supported by CAPES, Brasil.

César J. Niche was partially supported by CNPq, Brasil.

Received 6 July 2017

Accepted 14 January 2018

Published 14 May 2018