Contents Online
Communications in Mathematical Sciences
Volume 15 (2017)
Number 6
Inverse eigenvalue problem for tensors
Pages: 1627 – 1649
DOI: https://dx.doi.org/10.4310/CMS.2017.v15.n6.a7
Authors
Abstract
Let $\mathbb{T}(\mathbb{C}^n , m+1)$ be the space of tensors of order m+1 and dimension n with complex entries. A tensor $\mathcal{T} \in \mathbb{T}(\mathbb{C}^n , m+1)$ has $nm^{n-1}$ eigenvalues (counted with algebraic multiplicities). The inverse eigenvalue problem for tensors is a generalization of the inverse eigenvalue problem for matrices. Namely, given a multiset $S \in \mathbb{C}^{nm^{n-1}} / \mathfrak{S} (nm^{n-1})$ of total multiplicity $nm^{n-1}$, is there a tensor in $\mathbb{T}(\mathbb{C}^n , m+1)$ such that the set of eigenvalues of $\mathcal{T}$ is exactly $S$? The solvability of the inverse eigenvalue problem for tensors is studied in this article. With tools from algebraic geometry, it is proved that the necessary and sufficient condition for this inverse problem to be generically solvable is $m=1$, or $n=2$, or $(n,m) = (3,2), (4,2), (3,3)$.
Keywords
tensor, eigenvalue, inverse problem
2010 Mathematics Subject Classification
15A18, 15A69, 65F18
Received 27 September 2016
Published 27 June 2017