Contents Online
Communications in Mathematical Sciences
Volume 15 (2017)
Number 6
Global well-posedness of strong solutions to the 2D damped Boussinesq and MHD equations with large velocity
Pages: 1617 – 1626
DOI: https://dx.doi.org/10.4310/CMS.2017.v15.n6.a6
Author
Abstract
In this paper, we obtain global well-posedness for the 2D damped Boussinesq equations. Based on the estimate of the damped Euler equations leading to the uniform corresponding bound which does not grow in time, we can achieve this goal by using a new decomposition technique. Comparing with the previous works [D. Adhikar, C. Cao, J. Wu, and X. Xu, J. Diff. Eqs., 256:3594–3613, 2014] and [J. Wu, X. Xu, and Z. Ye, J. Nonlineal Sci., 25:157–192, 2015], we do not need any small assumptions of the initial velocity. As an application of our method, we obtain a similar result for the 2D damped MHD equations.
Keywords
Boussinesq equations, MHD equations, global well-posedness
2010 Mathematics Subject Classification
35Q35, 76B03
Received 9 August 2016
Published 27 June 2017