Contents Online
Communications in Mathematical Sciences
Volume 14 (2016)
Number 4
Single to double mill small noise transition via semi-Lagrangian finite volume methods
Pages: 1111 – 1136
DOI: https://dx.doi.org/10.4310/CMS.2016.v14.n4.a12
Authors
Abstract
We show that double mills are more stable than single mills under stochastic perturbations in swarming dynamic models with basic attraction–repulsion mechanisms. In order to analyse this fact accurately, we will present a numerical technique for solving kinetic mean field equations for swarming dynamics. Numerical solutions of these equations for different sets of parameters will be presented and compared to microscopic and macroscopic results. As a consequence, we numerically observe a phase transition diagram in terms of the stochastic noise going from single to double mill for small stochasticity fading gradually to disordered states when the noise strength gets larger. This bifurcation diagram at the inhomogeneous kinetic level is shown by carefully computing the distribution function in velocity space.
Keywords
self-propelled interacting particles, mean-field equations, semi-Lagrangian method, finite volume method, milling solution, phase transition
2010 Mathematics Subject Classification
35B40, 74S10, 82C22, 92C15
Published 5 June 2023