Contents Online
Communications in Mathematical Sciences
Volume 14 (2016)
Number 1
Large time behavior of entropy solutions to a unipolar hydrodynamic model of semiconductors
Pages: 69 – 82
DOI: https://dx.doi.org/10.4310/CMS.2016.v14.n1.a4
Author
Abstract
In this paper, we study the large time behavior of entropy solutions to the onedimensional unipolar hydrodynamic model for semiconductors in the form of Euler–Poisson equations. First of all, a large time behavior framework for the time-increasing entropy solutions is given. In this framework, the global entropy solutions (which increase slowly with time) are proved to decay exponentially fast to the corresponding stationary solutions. Then, for an application purpose, the existence and time-increasing-rate of the global entropy solutions with large initial data is considered by using a modified fractional step Lax–Friedrichs scheme and the theory of compensated compactness. By using the large time behavior framework, the global entropy solutions are proved to decay exponentially fast to the stationary solutions when the adiabatic index $\gamma \gt 3$, without any assumption on smallness or regularity for the initial data.
Keywords
compressible Euler equation, entropy solution, large time behavior
2010 Mathematics Subject Classification
35Mxx, 35Q35, 76W05
Published 16 September 2015