Contents Online
Communications in Mathematical Sciences
Volume 13 (2015)
Number 6
Scalar conservation laws with multiple rough fluxes
Pages: 1569 – 1597
DOI: https://dx.doi.org/10.4310/CMS.2015.v13.n6.a10
Authors
Abstract
We study pathwise entropy solutions for scalar conservation laws with inhomogeneous fluxes and quasilinear multiplicative rough path dependence. This extends the previous work of Lions, Perthame, and Souganidis who considered spatially independent and inhomogeneous fluxes with multiple paths and a single driving singular path respectively. The approach is motivated by the theory of stochastic viscosity solutions which relies on special test functions constructed by inverting locally the flow of the stochastic characteristics. For conservation laws, this is best implemented at the level of the kinetic formulation which we follow here.
Keywords
stochastic scalar conservation laws, rough paths, random dynamical systems, kinetic solutions
2010 Mathematics Subject Classification
35L65, 35R60, 60H15
Published 13 May 2015