Contents Online
Communications in Mathematical Sciences
Volume 13 (2015)
Number 6
Stability of 2D solitons for a sixth order Boussinesq type model
Pages: 1379 – 1406
DOI: https://dx.doi.org/10.4310/CMS.2015.v13.n6.a2
Author
Abstract
We study orbital stability of the solitary wave of least energy for a nonlinear 2D Benney–Luke model of higher order related to long water waves with small amplitude in the presence of strong surface tension. We follow a variational approach which includes the characterization of the ground state solution set associated with solitary waves. We use the Hamiltonian structure of this model to establish the existence of an energy functional conserved in time for the modulated equation associated with this Benney–Luke type model. For wave speed near zero or one, and in the regime of strong surface tension, we prove the orbital stability result by following a variational approach.
Keywords
Cauchy problem, solitary waves, variational methods, orbital stability
2010 Mathematics Subject Classification
35B35, 35Q35, 76B25
Published 13 May 2015