Contents Online
Communications in Mathematical Sciences
Volume 11 (2013)
Number 1
Slow manifolds for multi-time-scale stochastic evolutionary systems
Pages: 141 – 162
DOI: https://dx.doi.org/10.4310/CMS.2013.v11.n1.a5
Authors
Abstract
This article deals with invariant manifolds for infinite dimensional random dynamical systems with different time scales. Such a random system is generated by a coupled system of fast- slow stochastic evolutionary equations. Under suitable conditions, it is proved that an exponentially tracking random invariant manifold exists, eliminating the fast motion for this coupled system. It is further shown that if the scaling parameter tends to zero, the invariant manifold tends to a slow manifold which captures long time dynamics. For illustration, the results are applied to a few systems of coupled parabolic-hyperbolic partial differential equations, coupled parabolic partial differential-ordinary differential equations, and coupled hyperbolic-hyperbolic partial differential equations.
Keywords
stochastic partial differential equations (SPDEs), random dynamical systems, multiscale systems, random invariant manifolds, slow manifolds, exponential tracking property
2010 Mathematics Subject Classification
37D10, 37L55, 60H15, 70K70
Published 7 September 2012