Contents Online
Communications in Mathematical Sciences
Volume 7 (2009)
Number 4
Convergence to equilibrium for a phase-field model for the mixture of two viscous incompressible fluids
Pages: 939 – 962
DOI: https://dx.doi.org/10.4310/CMS.2009.v7.n4.a7
Authors
Abstract
In this paper, we study the existence and long-time behavior of global strong solutions to a system describing the mixture of two viscous incompressible Newtonian fluids of the same density. The system consists of a coupling of Navier-Stokes and Cahn-Hilliard equations. We first show the global existence of strong solutions in several cases. Then we prove that the global strong solution of our system will converge to a steady state as time goes to infinity. We also provide an estimate on the convergence rate.
Keywords
Navier-Stokes equation, Cahn-Hilliard equation, convergence to equilibrium, Lojasiewicz-Simon approach
2010 Mathematics Subject Classification
35K55, 35Q35, 76D05
Published 1 January 2009