Contents Online
Communications in Mathematical Sciences
Volume 5 (2007)
Number 4
On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity
Pages: 851 – 864
DOI: https://dx.doi.org/10.4310/CMS.2007.v5.n4.a6
Authors
Abstract
The non-local peridynamic theory describes the displacement field of a continuous body by the initial-value problem for an integro-differential equation that does not include any spatial derivative. The non-locality is determined by the so-called peridynamic horizon $\delta$ which is the radius of interaction between material points taken into account. Well-posedness and structural properties of the peridynamic equation of motion are established for the linear case corresponding to small relative displacements. Moreover the limit behavior as $\delta \rightarrow 0$ is studied.
Keywords
linear elasticity, non-local theory, peridynamic equation, Navier equation
2010 Mathematics Subject Classification
74B05, 74B99, 74H10, 74H20, 74H25
Published 1 January 2007