Contents Online
Communications in Mathematical Sciences
Volume 5 (2007)
Number 3
Absorbing boundary conditions for the multidimensional Klein-Gordon equation
Pages: 743 – 764
DOI: https://dx.doi.org/10.4310/CMS.2007.v5.n3.a12
Authors
Abstract
We consider the numerical solution of the linear Klein-Gordon equation in $\bbfR^2\times$ and $\bbfR^3\times$. An artificial boundary is introduced to obtain a bounded computational domain. On the given artificial boundary, the exact boundary condition and a series of approximating boundary conditions are constructed, which are called absorbing boundary conditions. By using either the exact or approximating boundary conditions on the artificial boundary, the original problem is reduced to either an equivalent or an approximately equivalent initial-boundary value problem on the bounded computational domain. The uniqueness of the approximate problem is then proved. The numerical results demonstrate that the method given in this paper is effective and feasible.
Keywords
Klein-Gordon equation, artificial boundary, absorbing boundary condition
2010 Mathematics Subject Classification
35L05, 35Q40, 42C10, 65M60
Published 1 January 2007