Contents Online
Communications in Information and Systems
Volume 6 (2006)
Number 2
On the Smallest Enclosing Balls
Pages: 137 – 160
DOI: https://dx.doi.org/10.4310/CIS.2006.v6.n2.a3
Authors
Abstract
In the paper a theoretical analysis is given for the smallest ball that covers a finite number of points $p_1, p_2, \cdots, p_N \in \Bbb R^n$. Several fundamental properties of the smallest enclosing ball are described and proved. Particularly, it is proved that the $k$-circumscribing enclosing ball with smallest $k$ is the smallest enclosing ball, which dramatically reduces a possible large number of computations in the higher dimensional case. General formulas are deduced for calculating circumscribing balls. The difficulty of the closed-form description is discussed. Finally, as an application, the problem of finding a common quadratic Lyapunov function for a set of stable matrices is considered.
Keywords
Smallest enclosing ball, k-dimensional large circle, circumscribing ball
Published 1 January 2006