Contents Online
Communications in Analysis and Geometry
Volume 28 (2020)
Number 8
The Second of Two Special Issues in Honor of Karen Uhlenbeck’s 75th Birthday
Special-Issue Editors: Georgios Daskalopoulos (Brown University), Kefeng Liu, Chuu-Lian Terng (U. of Cal. Irvine), and Shing-Tung Yau
Geodesic orbit spaces in real flag manifolds
Pages: 1933 – 2003
DOI: https://dx.doi.org/10.4310/CAG.2020.v28.n8.a7
Authors
Abstract
We describe the invariant metrics on real flag manifolds and classify those with the following property: every geodesic is the orbit of a one-parameter subgroup. Such a metric is called g.o. (geodesic orbit). In contrast to the complex case, on real flag manifolds the isotropy representation can have equivalent submodules, which makes invariant metrics depend on more parameters and allows us to find more cases in which non-trivial g.o. metrics exist.
Received 30 November 2018
Accepted 9 October 2020
Published 8 January 2021