Contents Online
Communications in Analysis and Geometry
Volume 24 (2016)
Number 2
Gromov–Witten theory of product stacks
Pages: 223 – 277
DOI: https://dx.doi.org/10.4310/CAG.2016.v24.n2.a1
Authors
Abstract
Let $\mathcal{X}_1$ and $\mathcal{X}_2$ be smooth proper Deligne–Mumford stacks with projective coarse moduli spaces. We prove a formula expressing Gromov–Witten invariants of the product stack $\mathcal{X}_1 \times \mathcal{X}_2$ in terms of Gromov–Witten invariants of the factors $\mathcal{X}_1$ and $\mathcal{X}_2$. As an application, we deduce a decomposition result for Gromov–Witten theory of trivial gerbes.
Published 14 June 2016