Contents Online
Advances in Theoretical and Mathematical Physics
Volume 23 (2019)
Number 7
Knots-quivers correspondence
Pages: 1849 – 1902
DOI: https://dx.doi.org/10.4310/ATMP.2019.v23.n7.a4
Authors
Abstract
We introduce and explore the relation between knot invariants and quiver representation theory, which follows from the identification of quiver quantum mechanics in D‑brane systems representing knots. We identify various structural properties of quivers associated to knots, and identify such quivers explicitly in many examples, including some infinite families of knots, all knots up to 6 crossings, and some knots with thick homology. Moreover, based on these properties, we derive previously unknown expressions for colored HOMFLY‑PT polynomials and superpolynomials for various knots. For all knots, for which we identify the corresponding quivers, the LMOV conjecture for all symmetric representations (i.e. integrality of relevant BPS numbers) is automatically proved.
This work was supported by the ERC Starting Grant no. 335739 “Quantum fields and knot homologies” funded by the European Research Council under the European Union’s Seventh Framework Programme, and by the Foundation for Polish Science. M.S. was partially supported by the Ministry of Science of Serbia, project no. 174012.
Published 15 May 2020