Contents Online
Advances in Theoretical and Mathematical Physics
Volume 16 (2012)
Number 4
Momentum transforms and Laplacians in fractional spaces
Pages: 1315 – 1348
DOI: https://dx.doi.org/10.4310/ATMP.2012.v16.n4.a5
Authors
Abstract
We define an infinite class of unitary transformations between position and momentum fractional spaces, thus generalizing the Fourier transform to a special class of fractal geometries. Each transform diagonalizes a unique Laplacian operator. We also introduce a new version of fractional spaces, where coordinates and momenta span the whole real line. In one topological dimension, these results are extended to more general measures.
Published 30 April 2013