Contents Online
Asian Journal of Mathematics
Volume 25 (2021)
Number 4
On strong exceptional collections of line bundles of maximal length on fano toric Deligne–Mumford stacks
Pages: 505 – 520
DOI: https://dx.doi.org/10.4310/AJM.2021.v25.n4.a3
Authors
Abstract
We study strong exceptional collections of line bundles on Fano toric Deligne–Mumford stacks $\mathbb{P}_\Sigma$ with rank of Picard group at most two. We prove that any strong exceptional collection of line bundles generates the derived category of $\mathbb{P}_\Sigma$, as long as the number of elements in the collection equals the rank of the (Grothendieck) $K$‑theory group of $\mathbb{P}_\Sigma$.
Keywords
toric Deligne–Mumford stacks, Picard groups, strong exceptional collections, line bundles, derived categories
2010 Mathematics Subject Classification
Primary 14M25. Secondary 14C20, 14F05.
Received 21 September 2020
Accepted 10 December 2020
Published 25 April 2022