Contents Online
Asian Journal of Mathematics
Volume 21 (2017)
Number 1
A criterion for a finite union of intervals to be a self-similar set satisfying the open set condition
Pages: 185 – 196
DOI: https://dx.doi.org/10.4310/AJM.2017.v21.n1.a6
Authors
Abstract
Let $k_1, k_2, \dotsc , k_m; \lambda_1, \lambda_2, \dotsc , \lambda_{m-1}$ be positive numbers. Let $K$ $(k_1, k_2, \dotsc ,k_m; \lambda_1, \lambda_2, \dotsc , \lambda_{m-1})$ be the union of $m$ closed intervals of lengths $k_1, k_2, \dotsc , k_m$ and gap lengths $ \lambda_1, \lambda_2, \dotsc , \lambda_{m-1}$. In this paper, we will give a characterization over $k_1, k_2, \dotsc , k_m$ and $ \lambda_1, \lambda_2, \dotsc , \lambda_{m-1}$ such that $K(k_1, k_2, \dotsc , k_m; \lambda_1, \lambda_2, \dotsc , \lambda_{m-1})$ is a self-similar set satisfying the open set condition.
Keywords
self-similar sets, open set condition, multiple word, non-negative matrices, common eigenvector
2010 Mathematics Subject Classification
Primary 28A80. Secondary 28A75.
Published 16 March 2017