Contents Online
Asian Journal of Mathematics
Volume 20 (2016)
Number 1
Chern–Weil Maslov index and its orbifold analogue
Pages: 1 – 20
DOI: https://dx.doi.org/10.4310/AJM.2016.v20.n1.a1
Authors
Abstract
We give Chern–Weil definitions of the Maslov indices of bundle pairs over a Riemann surface $\Sigma$ with boundary, which consists of symplectic vector bundle on $\Sigma$ and a Lagrangian subbundle on $\partial \Sigma$ as well as its generalization for transversely intersecting Lagrangian boundary conditions. We discuss their properties and relations to the known topological definitions. As a main application, we extend Maslov index to the case with orbifold interior singularities, via curvature integral, and find also an analogous topological definition in these cases.
Keywords
Maslov index, Chern–Weil theory, holomorphic disks, orbifolds
2010 Mathematics Subject Classification
53D12, 57R18
Published 28 January 2016