Asian Journal of Mathematics

Volume 18 (2014)

Number 1

Isoparametric hypersurfaces and metrics of constant scalar curvature

Pages: 53 – 68

DOI: https://dx.doi.org/10.4310/AJM.2014.v18.n1.a3

Authors

Guillermo Henry (Departamento de Matemática, Universidad de Buenos Aires, Argentina)

Jimmy Petean (CIMAT, Guanajuato. Gto., México; Departamento de Matemática, Universidad de Buenos Aires, Argentina)

Abstract

We showed the existence of non-radial solutions of the equation $\Delta u - \lambda u + \lambda u^q = 0$ on the round sphere $S^m$, for $q \lt (m + 2) / (m - 2)$, and study the number of such solutions in terms of $\lambda$. We show that for any isoparametric hypersurface $M \subset S^m$ there are solutions such that $M$ is a regular level set (and the number of such solutions increases with $\lambda$). We also show similar results for isoparametric hypersurfaces in general Riemannian manifolds. These solutions give multiplicity results for metrics of constant scalar curvature on conformal classes of Riemannian products.

Keywords

Yamabe equation, isoparametric hypersurfaces

2010 Mathematics Subject Classification

53C21

Published 13 May 2014