Contents Online
Asian Journal of Mathematics
Volume 15 (2011)
Number 1
Constructing Kähler-Ricci Solitons from Sasaki-Einstein Manifolds
Pages: 33 – 52
DOI: https://dx.doi.org/10.4310/AJM.2011.v15.n1.a3
Authors
Abstract
We construct gradient Kähler-Ricci solitons on Ricci-flat Kähler cone manifolds and on line bundles over toric Fano manifolds. Certain shrinking and expanding solitons are pasted together to form eternal solutions of the Ricci flow. The method we employ is the Calabi ansatz over Sasaki-Einstein manifolds, and the results generalize constructions of Cao and Feldman-Ilmanen- Knopf.
Keywords
Ricci soliton, Sasaki-Einstein manifold, toric Fano manifold
2010 Mathematics Subject Classification
Primary 53C55. Secondary 53C21, 55N91.
Published 30 March 2011