Contents Online
Acta Mathematica
Volume 225 (2020)
Number 1
Small cancellation labellings of some infinite graphs and applications
Pages: 159 – 191
DOI: https://dx.doi.org/10.4310/ACTA.2020.v225.n1.a3
Author
Abstract
We construct small cancellation labellings for some infinite sequences of finite graphs of bounded degree. We use them to define infinite graphical small cancellation presentations of groups. This technique allows us to provide examples of groups with exotic properties:
• We construct the first examples of finitely generated coarsely non-amenable groups (that is, groups without Guoliang Yu’s Property A) that are coarsely embeddable into a Hilbert space. Moreover, our groups act properly on CAT(0) cubical complexes.
• We construct the first examples of finitely generated groups, with expanders embedded isometrically into their Cayley graphs—in contrast, in the case of the Gromov monster expanders are not even coarsely embedded.
We present further applications.
Keywords
small cancellation, coarse embedding, Property A, CAT(0) cubical complex, graph coloring
2010 Mathematics Subject Classification
05C15, 20F06, 20F69, 46B85
Received 3 February 2016
Received revised 8 September 2019
Accepted 13 May 2020
Published 4 November 2020