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If seeds are planted firmly in the ground,
Wheat will eventually grow all around;

Then in the mill they grind it to make bread-
Its value soars now with it men are fed;

Next by men’s teeth the bread is ground again,
Life, wisdom, and intelligence they gain,

And when in love that life becomes effaced
Farmers rejoice the seed’s not gone to waste!

Jalal al-Din Muhammad Balkhi, Masnavi, Book 1, Section 148. Translation: Jawid Mojaddedi, Oxford World’s Classic. Calligraphy: nastaligonline.ir.



Preface

The main objective of the present book is to give an introduction to Hodge theory and its main
conjecture, the so-called Hodge conjecture. We aim to explore the origins of Hodge theory
much before the introduction of Hodge decomposition of the de Rham cohomology of smooth
projective varieties. This is namely the study of elliptic, abelian and multiple integrals originated
from the works of Cauchy, Abel, Jacobi, Riemann, Poincaré, Picard and Lefschetz, among many
others. Therefore, the reader is warned that he or she will find in this book a partial presentation
of the modern Hodge theory. The present book is intended to be an incomplete resuscitation of
Picard and Simart’s treatise Théorie des fonctions algébriques de deux variables indépendantes
after almost a century, keeping in mind that the main object of study is the multiple integral
itself and not other by-products. A complete analysis of this treatise and other contributions
need a historian in mathematics, and is beyond the scope of this book. Another main emphasis
of this book is on the computational aspects of the theory such as computing homologies by
means of vanishing cycles, de Rham cohomologies, Gauss—Manin connections, Hodge cycles,
etc. The development of Hodge theory during the last decades has put it far from its origin
and the introduction of mirror symmetry by string theorists and the period manipulations of
the B-model Calabi—Yau varieties, have risen the need for a text in Hodge theory with more
emphasis on periods and multiple integrals. We aim to present materials which are not covered
in J. Lewis’s book A survey of the Hodge conjecture, nor in C. Voisin’s books Hodge theory and
complex algebraic geometry, I and II. Therefore, the reader will not find in this book some of the
fundamental theorems in modern Hodge theory. We have tried to keep the text self-sufficient;
however, a basic undergraduate knowledge of Complex Analysis, Differential Equations, Alge-
braic Topology and Algebraic Geometry will make the reading of the text smoother. The text
is mainly written for two primary target audiences: graduate students who want to learn Hodge
theory and get a flavor of why the Hodge conjecture is hard to deal with, and mathematicians
who use periods and multiple integrals in their research and would like to put them in a Hodge
theoretic framework. We hope that our text, together with those mentioned above, makes Hodge
theory more accessible to a broader public.

Hossein Movasati
Rio de Janeiro, RJ, Brazil
April 2021
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A field of characteristic zero and its algebraic closure.

The field of algebraic numbers.

A finitely generated ring over the field k.

A parameter space.

The set of vector fields in T.

A point in the parameter space.

The set of n x m matrices with entries in R.

The set of n X n matrices with entries in R.

The dual of an R-module V. We always write a basis of a
free R-module of rank r as a r x 1 matrix. For a basis § of
V and « of VY we denote by

[0, 0] := [0;(8)]:

the corresponding r X r matrix.

The transpose of a matrix M. We also write M = [M;j],
where M;; is the (i, j) entry of M. The indices i and j al-
ways count the rows and columns, respectively.

The differential operator or a natural number which is the
degree of a tame polynomial.

The projective space.

Homogeneous coordinates of P!

Affine coordinates of C**!, for n = 1,2 we use the classical
notations (x,y) and (x,y,z), respectively.

A tame polynomial in R[xj,x,...,x,41].

The parameter in the tame polynomial f —s.

Monomials.

The weights of the variables x, x>, .. ..

An open set in the usual topology or an affine variety.

A fiber of a tame polynomial.

A smooth hypersurface in P"*1.



xii Frequently used notations

P Po The Picard number of a surface X and py := b, — p, where
b, is the second Betti number of X.

hii Hodge numbers of the projective variety X.

r Dimension of the moduli space of hypersurfaces.

Y A subvariety of X of codimension 1. It is usually the hy-
perplane section of X.

Z.7; Algebraic subvarieties/cycles of X.

Zoo The algebraic cycle obtained by intersection of X with a
linear P2+

7 A primitive algebraic cycle, that is, 7-Z.=0.

n,m The dimension of X and any number between O and 2n,
respectively.

HL(X), H (U) Algebraic de Rham cohomology

®,1M,08,Mp Differential forms in U or elements of HJf (X) or Hjy (U)
etc..

A The discriminant in R of a tame polynomial or a simplex.

A" The n-dimensional simplex.

A A divisible element in R in order to get tameness for f.

A The double discriminant which is an element in R.

H,(X,Z),H,(U,Z) The singular homology with coefficients in Z.

H,(X,Z)o,Hjx(X)o  The primitive (co)homology.

Hu(U,Z)o, Hy(U,Z)s The Z-module of cycles at infinity.

u Polarization which is an element in H% (X) obtained by
X c Pl

d The boundary map.

15} A homology class.

A A path in a topological space.

o,T Maps derived from the Leray-Thom-Gysin isomorphism.

0 =A{d}icv A continuous family of cycles.

Giors; Gfree The torsion and free subgroups of an abelian group G, re-
spectively.

U Cup product in singular or de Rham cohomology.

N Cap product in singular (co)homologies.

S" The n-dimensional sphere.

B" The n-dimensional ball.

a-b, (a,b) Intersection of topological or algebraic cycles a and b.

Hodge,(X,Z) The Z-module of Hodge cycles.

Ap Rational numbers which are responsible for distinguishing

between differential forms.
I'(a), B(ay,az,---) The I" and B-function, respectively.

Bg B-factors of the periods of the Fermat variety.
C The set of critical values of a map.

I, x! A basis of the Milnor module.

x4 The Fermat variety.

n
H,H H’ Brieskorn modules.



Frequently used notations

Xiii

Hodge filtration.

Weight filtration.

Gelfand-Leray form.

Gauss-Manin system of the tame polynomial f.
Jacobian ideal of the polynomial f.

The Milnor number of the tame polynomial f.
The group of d-th roots of unity.

Gauss-Manin connection.

Connection along a vector field v.

Period matrix, period map.

An invariant of Hodge cycles.

Hodge locus corresponding to the Hodge cycle 6.
Pochhammer symbol.

A modified Pochhammer symbol.

Fractional part of x.
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