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Preface 

These arc basically the notes that accompany my graduate course ''Algc1 
brmc Geometry I" at Tsmghua. As with every course 1 teach, 1 revise th~ 
text unttl I cease teachmg 1t and th1s ts why unttl recently I reststed thetr 
publication. But as in the past few years the changes became marginal, 
the weight of such obJections dummshed, and I finally dropped them. Yet 
a wammg IS m order. One reason lor these contmuous revtstons was tha~ 
these notes were tailored to the "needs of the day". This of course changes 
with tune and that makes me ail the more aware of Its defiClenCles (b)J 
sometimes not g1vmg a toptc the treatment 1t deserves) and omtss1ons (b)j 
skipping a nearby point of interest that would have merited discussion). On 
occaswn I tned to make up for this by mcluding some remarks m a smailer 
font. 

As I hope this course w11l make clear, much of commutative algebr~ 
owes 1ts extstence to algebratc geometry and vtce versa, and th1s ts wh)J 
there is no clear border between the two. This is why some familiarity with 
some commutative algebra IS a prereqUisite. But as a service to students 
lackmg such background, I occasiOnally recall baste !acts (all ol It bemgj 
standard fare in a first course on these subjects), also in a smaller font. 
Everythmg else we need has been mcluded, so that these notes can be con­
stdered as essenltally sell-contamed. (The only exception IS the use ol th~ 
Cohcn-Macaulay property of a regular local ring (3.10.12), which we onlyj 
use to prove a Bezout theorem.) In the end you wiil find that by learmngj 
algebraic geometry, you not only learn more commutative algebra, but alsq 
develop a geometrical way of thmking about It. 

pn <www. staff. science. uu. nl/ rvlooij 101/> I maintain a well 
page of this course, where among other things, I briefly explain what "Alge1 



VI Preface 

braic Geometry" is about and list some books for further reading. To repea~ 
a recommendat10n that 1s made there, 1 encourage you to buy at least on~ 
other (prelerably paper!) text book as a compamon. Such a book may cover 
more or somewhat different ground, so that you may get a more balancedj 
vtew of the subJect. 

The contents of these notes should be clear from a glance at the epony­
mous table. But I could charactenze them also by what they lack: they deall 
with "Algebraic Geometry" over an algebraically closed field, and make nq 
use of (co) homological methods. For example, m the last chapter, which 
among other thmgs proves the Rtemann-Roeh theorem lor curves, the clas­
sical notion of a repartition comes in place of sheaf cohomology. The twq 
ormsstons are related, smce sheaf cohomology m ''Algebraic Geometry" 1~ 
best developed m the settmg ol schemes (whtch ts mdeed the toptc ol a 
sequel to this course). 

Eduard LootJeng~ 
!January 20191 



Some conventions 

Rings arc always supposed to be commutative and to possess a unit and a 
nng homomorphism 1s reqmred to take urnt to umt. We allow that I - OJ 
but in that case we gel or course the zero ring {0} and there cannot be an~ 
ring homomorphism going from this ring to a nonzero ring, as it must takcj 
umt to urnt. Smce a pnme Ideal of a nng 1s by defirnhon not the whole nng, 
the zero nng has no pnme 1deals and hence also no maxnnal 1deals. When! 
R and R' arc two rings, then R x R' is also one for componentwise additiollj 
and multiplication, the unit being ( 1, 1). The projections onto its factors ar~ 
adm1tted as nng homomorphisms, but an mclus1on obtamed by pultmg on~ 
coordinate zero is not, as this is not unital, unless in that coordinate we have! 
the zero nng (m other words, "x" defines a categoncal product but not a 
categorical sum). 

We say that a ring is a domain e) if its zero ideal is a prime ideal, ig 
other words, if the ring is not the zero ring (l ¥- 0) and has no zero divisors. 

pivcn a ring R, then an R-algehra is a ring A endowed with a ring hoj 
momorphlSln ifJ : R---+ A. When ifJ 1s understood, then for every r E R andj 
a E A, the product cp(r)a is often denoted by ra. In case R is a field,¢ will! 
be injective so that R may be regarded as a subring of A, but this need not 
be so m general. We say that A 1s finitelv generated as an R-algebra If we 
can lmd a1, ••• , an m A such that every element ol A can be wnlten as a 
polynomial in these clements with coefficients in R; in other words, if thcj 
R-algebra homomorphism R[xt, ... ,xn] ---+A which sends the variable Xi tq 
ai is onto. This is not to be confused with the notion of finite generation of 

~ Since we assume all our rings to be commutative and with unit, this is the same notiorl 
Fts integral domain. 
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an R-modulc M which merely means the existence of a smjective homo­
morphism of R-modules Rn---+ M for some n ~ 0. 

~nmlarly, a held L ts satd to be.finitely generated as a .field over a sub­
field K if there exist h1, ... , hn in L such that every clement of L can bcj 
wntten as a fractiOn of two polynormais m these elements (the denomina­
tor bemg nonzero ol course) wtth coelltctents m K. 

We denote the multiplicative group of the invertible clements (units) of 
a ring R by R x ~ 
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