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Preface

The uniformization theorem for Riemann surfaces is one of the most important
and beautiful theorems in mathematics. Its statement is clean, simple and natural,
and it ties together several major areas of the main stream mathematics. The road
from the initial conception by Klein and Poincaré to the final rigorous proofs by
Koebe and Poincaré of the uniformization theorem was filled with inspiration,
competition, excitement and disappointment.

Poincaré gave multiple proofs or attempts to establish different versions of the
uniformization theorem. The work of Fuchs on differential equations with regular
singularities inspired Poincaré’s earlier work on differential equations, automor-
phic functions, and the uniformization theorem, which made him famous and also
partially motivated Hilbert’s twenty-first problem on the existence of linear differ-
ential equations with specified singular points and monodromy groups, which was
in turn generalized to the Riemann-Hilbert correspondence.

After the Riemann mapping theorem for domains in the complex plane and
the uniformization theorem for Riemann surfaces, many attempts were made to
obtain higher dimensional generalizations. It seems that one of the most successful
generalizations is the notion of Kähler-Einstein metrics for compact complex man-
ifolds. Calabi-Yau manifolds form a special class of Kähler-Einstein manifolds and
have many applications to subjects ranging from differential geometry, algebraic
geometry, mathematical physics, topology, number theory, algebra, etc. They are
higher dimensional generalizations of elliptic curves. Though many results are
known about Calabi-Yau manifolds, much more is waiting to be explored. The
periods of elliptic curves satisfy the Picard-Fuchs equation, which is a special dif-
ferential equation with regular singularities. Periods of Calabi-Yau manifolds also
satisfy Picard-Fuchs equations.

In view of the interconnection of these topics, a conference titled “Uniformiza-
tion, Riemann-Hilbert Correspondence, Calabi-Yau manifolds, and Picard-Fuchs
Equations” was held at Institute Mittag-Leffler in July 13–18, 2015. The purpose
of the conference was to bring together many leading experts in these subjects to
explore their historical development and interconnection between them.

To keep a permanent record of this conference and also to continue the fruitful
interaction between the participants, we decided to edit a book which can serve
as an overview of the many topics discussed. Almost all papers of this book were
contributed by speakers of the conference. We hope and believe that they convey
the lively atmosphere and accessible style of the conference.

All participants agreed that this conference was held at one of the most pleas-
ant places for mathematicians: the great mathematics library, views of the sur-
roundings, and fresh fruits during the tea break. We are grateful to Institute
Mittag-Leffler for their hospitality, to many speakers for their excellent talks and
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contributions to this book, and to referees for their help in reviewing and improving
the papers in this book.

Lizhen Ji
Shing-Tung Yau

February 2017
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Hypergeometric Functions, from

Riemann till Present

Frits Beukers

Abstract

Hypergeometric functions form a family of classical functions that occur frequently
within many areas of mathematics and its applications. They were first introduced
by Euler, who already discovered a great many surprising properties. Gauss con-
tinued this study by considering hypergeometric functions as solutions of a second
order differential equation in the complex plane, including their multivaluedness.
Riemann took up Gauss’s study and made hypergeometric functions as prime ex-
ample for his ideas on analytic continuation. It was also Riemann who named
them Gauss hypergeometric functions. Although there exist many generalizations
nowadays, we concentrate ourselves on these original functions. We briefly sketch
Riemann’s ideas and give an overview of developments around Gauss’s hypergeo-
metric function until recent times. There is an overlap of the first two sections with
the author’s summer school notes in [1].
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1 Definition, first properties

The hypergeometric function of Gauss (although Euler-Gauss might be more ap-
propriate) is a function of one complex variable z and three parameters a, b, c
which we take to be in R. Suppose that a, b, c ∈ R and c �∈ Z�0. Define Gauss’s
hypergeometric function by

2F1(a, b, c|z) =
∑ (a)n(b)n

(c)nn!
zn. (1.1)

The Pochhammer symbol (x)n is defined by (x)0 = 1 and (x)n = x(x + 1) · · · (x +
n − 1). The radius of convergence of (1.1) is 1 unless a or b is a non-positive
integer, in which cases we have a polynomial. Here are a couple of examples,


