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PREFACE

This year, in Gökova, we had many interesting talks on high dimensional geometric,
symplectic and contact topology, as well as on low-dimensional manifolds. We also had two
very stimulating mini-courses, one on the triangulation theorem, by Ciprian Manolescu;
and the other on the higher dimensional contact geometry by Emmy Murphy. We thank
all the participants for making this conference a very informative enjoyable event. We
thank TMD (Turkish Mathematical Society), and NSF (National Science Foundation) for
funding this conference, and thank International Press for printing and distributing these
proceedings. We finally thank Hotel Yücelen (which is located on the scenic shores of the
Gökova Bay) for supporting and hosting this conference.

March 2016 The Editors
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Thoughts about a good classification of manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
M. KRECK

Nonexistence of rational homology disk weak fillings of certain singularity links . . . . . 202
M. BHUPAL and A. STIPSICZ

Non semi-simple TQFTs from unrolled quantum sl(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218
C. BLANCHET, F. CONSTANTINO, N. GEER and B. PATUREAU-MIRAND





Proceedings of 22nd Gökova
Geometry-Topology Conference
pp. 1 – 38

Lectures on the triangulation conjecture

Ciprian Manolescu

Abstract. We outline the proof that non-triangulable manifolds exist in any dimen-
sion bigger than four. The arguments involve homology cobordism invariants coming
from the Pin�2� symmetry of the Seiberg-Witten equations. We also explore a related
construction, of an involutive version of Heegaard Floer homology.

1. Introduction

The triangulation conjecture stated that every topological manifold can be triangu-
lated. The work of Casson [1] in the 1980’s provided counterexamples in dimension 4.
The main purpose of these notes is to describe the proof of the following theorem.

Theorem 1.1 ([26]). There exist non-triangulable n-dimensional topological manifolds
for every n � 5.

The proof relies on previous work by Galewski-Stern [15] and Matumoto [27], who
reduced this problem to a different one, about the homology cobordism group in three
dimensions. Homology cobordism can be explored using the techniques of gauge theory,
as was done, for example, by Fintushel and Stern [9, 10], Furuta [13], and Frøyshov [12].
In [26], Pin�2�-equivariant Seiberg-Witten Floer homology is used to construct three new
invariants of homology cobordism, called α, β and γ. The properties of β suffice to answer
the question raised by Galewski-Stern and Matumoto, and thus prove Theorem 1.1.

The paper is organized as follows.
Section 2 contains background material about triangulating manifolds. In particular,

we sketch the arguments of Galewski-Stern and Matumoto that reduced Theorem 1.1 to
a problem about homology cobordism.

In Section 3 we introduce the Seiberg-Witten equations, finite dimensional approxi-
mation, and the Conley index. Using these ingredients, we review the construction of
Seiberg-Witten Floer stable homotopy types, following [25].

In Section 4 we explore the module structure on Borel homology, and more specifically
on the Pin�2�-equivariant homology of the Seiberg-Witten Floer stable homotopy type.
Using this module structure, we define the three numerical invariants α, β, γ, and show
that they are preserved by homology cobordism.

Key words and phrases. Triangulations, Seiberg-Witten equations, Floer homology.
The author was partial supported by the NSF grant DMS-1402914.
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Section 5 contains material about equivariant Spanier-Whitehead duality. This is ap-
plied to understanding the behavior of α, β, γ under orientation reversal. Showing that
β��Y � � �β�Y � completes the proof of Theorem 1.1.

In Section 6 we outline the construction of involutive Heegaard Floer homology, joint
work of Hendricks and the author [18]. Involutive Heegaard Floer homology is a more
computable counterpart to Z�4-equivariant Seiberg-Witten Floer homology, and has its
own applications to questions about homology cobordism.

2. Triangulations

2.1. Basic definitions

A triangulation of a topological space X is a homeomorphism from X to a simplicial
complex. Let us recall that a simplicial complex K is specified by a finite set of vertices V
and a finite set of simplices S � P�V � (the power set of V ), such that if σ � S and τ � σ
then τ � S. The combinatorial data �V, S� is called an abstract simplicial complex. To
each such data, there is an associated topological space, called the geometric realization.
This is constructed inductively on d � 0, by attaching a d-dimensional simplex Δd for
each element σ � S of cardinality d; see [17]. The result is the simplicial complex K. In
practice, we will not distinguish between K and the data �S, V �.

Let K � �V, S� be a simplicial complex. Formally, for a subset S� � S, its closure is

Cl�S�� � 	τ � S
τ � σ � S��

The star of a simplex τ � S is

St�τ� � 	σ � S
τ � σ�

The link of a simplex τ � S is

Lk�τ� � 	σ � Cl�St�τ��
τ 
 σ � ��

Example 2.1. Let K � 	V, S�, where V � 	1, 2, 3, 4�, and

S � 		1�, 	2�, 	3�, 	4�, 	1, 2�, 	1, 3�, 	1, 4�, 	3, 4�, 	1, 3, 4��.

The geometric realization is

1

2 3

4

The link of 	4� is the edge 	1, 3� (including its vertices, of course). The link of 	1� is
the union of 	2� and the edge 	3, 4�.

2
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Lectures on monopole Floer homology

Francesco Lin

Abstract. These lecture notes are a friendly introduction to monopole Floer homol-
ogy. We discuss the relevant differential geometry and Morse theory involved in the
definition. After developing the relation with the four-dimensional theory, our atten-
tion shifts to gradings and correction terms. Finally, we sketch the analogue in this
setup of Manolescu’s recent disproof of the long standing Triangulation Conjecture.

Introduction

The present notes are a friendly introduction to monopole Floer homology for low
dimensional topologists. The topic has its definitive (and essentially self-contained) ref-
erence [11] in which the whole theory is developed in detail. On the other hand, the
monograph is quite scary at a first sight, both because of its size and its demanding an-
alytical content (which might be stodgy to many people in the field). Our goal here is to
explain the subject without going too deep in the details, and try to convey the key ideas
involved. Of course we need to assume some background from the reader. In particular,
we expect two things.

• A basic understanding of Seiberg-Witten theory in dimension four, following for
example the classic reference [18] (which contains much more than we require). In
particular we expect the reader to have digested the differential geometry needed
to write down the equations, and to have an idea on how one can use them to
define invariants of smooth four manifolds with b

+
2 ≥ 2.

• A solid understanding of Morse theory in finite dimensions, including the Morse-
Witten chain complex. The reader should know how to prove a priori invariance
(i.e. without referring to the isomorphism with singular homology) using contin-
uation maps. There are many good references for this, see for example [9] for a
nice introduction and [22] for a more thorough discussion.

Roughly speaking, the main complication is that the Seiberg-Witten equations are invari-
ant under an S

1-action which is not free. In usual Morse homology (in finite dimensions),
we try to understand the homology of a manifold M using a Morse function f on it. In
our case, M comes with an S

1-action and the goal we have in mind is to understand the
S
1-equivariant homology of M . To do this, we will introduce a suitable model in Morse

homology.
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Of course a basic knowledge of the cousin theory Heegaard Floer homology ([21], [20])
will be helpful when dealing with the formal aspects of the theory, but we will not assume
that.

The theory has many interesting applications in the study of low dimensional topology.
Many of these are already outlined in the last Chapters of [11] and we crafted these notes
so that the reader should be able to read those after digesting them. Furthermore the
proof of many interesting results in Heegaard Floer homology is formally identical in our
setting. For this reason we will build up towards an application which is missing in both
setups, namely a disproof of the Triangulation Conjecture in higher dimensions. This
almost one-hundred-year old problem was settled by Manolescu using his Seiberg-Witten
Floer homotopy type approach ([15]). The papers [14] and [16] provide very nice accounts
of the background of the problem. In the last few sections of these notes we will build
toward the alternative (but formally identical) argument of [13], and we refer the reader
to those surveys for a more detailed discussion of the Triangulation Conjecture itself.

Of course there are many sins of omission in the present lectures. Among the others:

• We will not be able to provide interesting examples of computations. Some of
these can be obtained using the surgery exact triangle, see [12] and Chapter 42
of [11].

• Throughout the notes, we will forget about orientations of moduli spaces and use
only coefficients in F, the field with two elements.

• We will not discuss the applications of this story to the gluing properties of
the Seiberg-Witten invariants, which is indeed the original motivation for the
definition of the Floer homology groups. This is nicely described in Chapter 3 of
[11]. Similarly, the reader can find there a discussion of local coefficients.

• We will not discuss the beautiful non vanishing result which plays a key role in
Taubes’ proof of the Weinstein conjecture in dimension three ([23]). The details
of this are provided in Chapters 33− 35 in [11].

Throughout the lectures we will provide some exercises (with hints) which are worth
thinking about. The solution to most of them can be found in [11].

1. The formal picture

We describe the structure of the invariants we will construct. Again we will only
consider coefficients in F, the field with two elements. In these notes will focus on closed
oriented connected three manifolds. To such a Y we associate three F-vector spaceŝ

HM ∗(Y ), ĤM ∗(Y ), HM ∗(Y )

called the monopole Floer homology groups. These are read respectively HM-to, HM-from

and HM-bar. These decompose according to the spinc structures on the three manifold
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Contact topology from the loose viewpoint

Roger Casals and Emmy Murphy

Abstract. In this expository article, we describe a number of methods for studying
high dimensional contact manifolds. We particularly focus on the concept of over-
twistedness and looseness and their relation with geometric structures such as open
books and surgery cobordisms. These notes are based on a lecture series given by the
second author at the 2015 Gökova Geometry-Topology Conference, and built on the
series of articles [8, 9, 10].

1. Introduction

1.1. Basics of contact geometry

A contact structure on an odd dimensional smooth manifold M2n+1 is a maximally non-
integrable hyperplane field ξ2n ⊆ TM . In this article we will always assume that the
hyperplane field ξ is coorientable, i.e. we can write ξ as the kernel of a globally defined
1-form α ∈ Ω1(M). In this case, the condition of maximal non–integrability can be
rephrased as the condition that α∧ (dα)n is never zero, or equivalently the pair (ξ, dα) is
a symplectic bundle. In particular the (2n+ 1)–form α ∧ (dα)n defines a volume form.

This is an open condition for the hyperplane field ξ and thus a C1–small perturbation of
a contact structure is still a contact structure. In other words, the rank of the 2–form dα
has maximal rank when restricted to ξ , which is an open condition in the C1–topology
of the space of hyperplane fields of the tangent bundle TM . This is indeed the generic
behaviour of a hyperplane field, in contrast to a situation in which we restrict the rank of
dα to be non–maximal. An extreme instance of this latter case is the vanishing dα|ξ = 0,
also known as the theory of foliations. See [22] for a discussion in the strongly interesting
three–dimensional case.

Remark 1. Though the equality ξ = kerα will be used systematically, we emphasize that
contact structures ξ are a more natural geometric structure in comparison to the 1-form
α ∈ Ω1(M) itself, which is only defined by ξ up to multiplication by positive functions
(once the coorientation of ξ is fixed). Indeed, the contact condition α ∧ (dα)n �= 0 is
invariant under the transformation α� efα for any function f ∈ C∞(M), and thus the
resulting volume form is an artifact of the particular choice of α. The choice of a par-
ticular contact form ξ = kerα fixes a particular vector field which preserves the contact

Key words and phrases. contact topology, overtwisted contact structures, loose Legendrian.
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structures (the Reeb field) and this gives a dynamical flavor to the theory [5].

We do note that the contact structure ξ together with its coorientation determine the sign
of the volume form α∧ (dα)n and therefore define an orientation on the smooth manifold
M . Throughout the article, we will assume that all smooth manifolds M come a priori
with an orientation, and by definition a cooriented contact structure is required to induce
an orientation which agrees with the prescribed one.

The appearance of contact structures can be traced to the study of geometric optics
and wave propagation [2, 6], and classical accounts on the subject can be found in
[1, Appendix IV] and [4, Chapter IV]. Since a rotation in an odd dimensional vector
space has a fixed axis, contact structures can only exist in odd dimensional smooth man-
ifolds. The counterpart for even dimensional manifolds are symplectic structures, and
contact geometry is the odd-dimensional sister of symplectic geometry. In particular, we
have the following basic theorems:

Theorem 1.1 ([1]). Let (M, ξ) be a contact manifold, then it is locally equivalent to

R2n+1
std = (R2n+1, ξ = kerαstd), αstd = dz −

n∑
i=1

yidxi.

In addition, the moduli of contact structures on a closed manifold is discrete: if ξt is
a homotopy of contact structures on a closed manifold M , then there is an isotopy
ft : M −→ M so that (ft)∗(ξ0) = ξt.

The first statement is referred to as Darboux’s Theorem, and the second as Gray’s sta-
bility theorem; these two theorems give contact geometry its marked topological flavor.
For instance, Darboux’s theorem implies that any contact manifold can alternatively be
described by a contact atlas; that is, a smooth atlas where the transition functions are
elements of the group of contact transformations

Cont(R2n+1
std ) = {ϕ ∈ Diff(R2n+1)

∣∣ ϕ∗αstd = efαstd for some f ∈ C∞M}.
Since the contact condition is C1–open, Gray’s theorem implies that any two contact
structures which are sufficiently C1–close are isotopic, and in particular cut–and–paste
operations and corner smoothings are well–defined up to contact isotopy.

1.2. An inadequate history of contact 3–manifolds

There is a long history of connections between 3–dimensional topology and contact struc-
tures on 3–manifolds [25]. Martinet established that every 3–manifold admits a contact
structure [35], and soon after Lutz [34] showed that in fact a plane field on a 3–manifold is
homotopic to a contact structure. In a beautiful application to low–dimensional topology,
Eliashberg gave a new proof of the fact that every orientation preserving diffeomorphism
of S3 extends to D4 using contact geometry [17, Section 6]. These are only three of a
fantastic list of results in the establishment of contact geometry as a field [24, 26].

82



Proceedings of 22nd Gökova
Geometry-Topology Conference
pp. 116 – 150

Noncommutative augmentation categories

Baptiste Chantraine, Georgios Dimitroglou Rizell, Paolo Ghiggini, and Roman Golovko

Abstract. To a differential graded algebra with coefficients in a noncommutative
algebra, by dualisation we associate an A∞-category whose objects are augmentations.
This generalises the augmentation category of Bourgeois and Chantraine [2] to the
noncommutative world.

1. Introduction

Differential graded algebras (DGAs for short) were introduced by Cartan in [4] and
occur naturally in a number of different areas of geometry and topology. We are here
interested in those that appear in the context of Legendrian contact homology, which is a
powerful contact topological invariant due to Chekanov [6] and Eliashberg, Givental and
Hofer [18]. In its basic setup, this theory associates a differential graded algebra, called
the Chekanov-Eliashberg DGA, to a given Legendrian submanifold of a contact manifold.
The DGA homotopy type (or even, stable tame isomorphism type) of the Chekanov-
Eliashberg DGA is independent of the choices made in the construction and invariant
under isotopy through Legendrian submanifolds. Because of some serious analytical dif-
ficulties, Legendrian contact homology has been rigorously defined only for Legendrian
submanifolds of contactisations of Liouville manifolds [15] and in few other sporadic cases
[6, 21, 32, 26, 17].

Since the Chekanov-Eliashberg DGA is semifree and fully noncommutative, it can be
difficult to extract invariants from it. In fact, as an algebra, it is isomorphic to a tensor
algebra (and therefore is typically of infinite rank) and its differential is nonlinear with
respect to the generators.

To circumvent these difficulties, Chekanov introduced his linearisation procedure in
[6]: to a differential graded algebra equipped with an augmentation he associates a chain
complex which is generated, as a module, by the generators of the DGA as an algebra. The
differential then becomes linear at the price of losing the information which is contained
in the multiplicative structure of the DGA, but at least the homology of the linearised

2010 Mathematics Subject Classification. Primary 16E45; Secondary 53D42, 57T30.
Key words and phrases. Noncommutative dga, augmentation, A∞-category.
The first author is partially supported by the ANR project COSPIN (ANR-13-JS01-0008-01) and the

ERC starting grant Géodycon. The second author is supported by the grant KAW 2013.0321 from the
Knut and Alice Wallenberg Foundation. The third author is partially supported by the ERC starting
grant Géodycon. The fourth author is supported by the ERC Advanced Grant LDTBud.

116



Noncommutative augmentation categories

complex is computable. It is well known that the set of isomorphism classes of linearised
homologies is invariant under DGA homotopy; see e.g. [1, Theorem 2.8]. Thus, linearised
Legendrian contact homology provides us with a computable Legendrian isotopy invariant.

In order to recover at least part of the nonlinear information lost in the linearisation,
one can study products in the linearised Legendrian contact homology groups induced by
the product structure of the Chekanov-Eliashberg DGA.

Civan, Koprowski, Etnyre, Sabloff and Walker in [8] endowed Chekanov’s linearised
chain complex with an A∞-structure. This construction was generalised in [2] by the first
author and Bourgeois, who showed that a differential graded algebra naturally produces an
A∞-category whose objects are its augmentations. In dimension three, the A∞-category
constructed by the first author and Bourgeois admits a unital refinement defined by
Ng, Rutherford, Shende, Sivek and Zaslow in [29]. The latter article also establishes
an equivalence between this unital A∞-category and one defined in terms of derived
sheaves of microlocal rank one with microsupport given by a fixed Legendrian knot. Our
expectation is that the A∞-structures constructed here correspond to such sheaves being
of arbitrary microlocal rank.

A∞-algebras are by now classical structures which were first introduced by Stasheff
in [36] as a tool in the study of ‘group-like’ topological spaces. Fukaya was the first
to upgrade the notion of an A∞-algebra to that of an A∞-category. In [23] he asso-
ciated an A∞-category, which now goes under the name of the Fukaya category, to a
symplectic manifold. See [33] for a good introduction. Inspired by Fukaya’s work [23],
Kontsevich in [25] formulated the homological mirror symmetry conjecture relating the
derived Fukaya category of a symplectic manifold to the derived category of coherent
sheaves on a “mirror” manifold.

The construction in [8] and [2] defines A∞-operations only when the coefficient ring
of the DGA is commutative. The goal of this paper is to extend that construction to
noncommutative coefficient rings in the following two cases:

(I) the coefficients of the DGA as well as the augmentations are taken in a unital
noncommutative algebra, or

(II) the coefficients of the DGA as well as the augmentations are taken in a non-
commutative Hermitian algebra. (See Definition 2.1.) This case includes both
finite-dimensional algebras over a field and group rings.

Case (II) is obviously included in Case (I), but we will see that there is a particularly
nice alternative construction of an A∞-structure in case (II) which gives a different result.
We refer to Subsections 4.1 and 4.2 for the respective constructions. Both generalisations
above are sensible to study when having Legendrian isotopy invariants in mind, albeit for
different reasons.

Case (I) occurs because there are Legendrian submanifolds whose Chekanov-Eliashberg
DGA does not admit augmentations in any unital algebra of finite rank over a commu-
tative ring, but admits an augmentation in a unital noncommutative infinite-dimensional
one (for example, in their characteristic algebras). The first such examples were Legen-
drian knots constructed by Sivek in [35] building on examples found by Shonkwiler and
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Uniqueness of extremal Lagrangian tori in the
four-dimensional disc

Georgios Dimitroglou Rizell

Abstract. The following interesting quantity was introduced by K. Cieliebak and
K. Mohnke for a Lagrangian submanifold L of a symplectic manifold: the mini-
mal positive symplectic area of a disc with boundary on L. They also showed that
this quantity is bounded from above by π/n for a Lagrangian torus inside the 2n-
dimensional unit disc equipped with the standard symplectic form. A Lagrangian
torus for which this upper bound is attained is called extremal. We show that all
extremal Lagrangian tori inside the four-dimensional unit disc are contained in the
boundary ∂D4 = S3. It also follows that all such tori are Hamiltonian isotopic to
the product torus S1

1/
√

2
× S1

1/
√

2
⊂ S3. This provides an answer to a question by L.

Lazzarini in the four-dimensional case.

1. Introduction and results

In the following we will consider the standard even dimensional symplectic vector
space (Cn

, ω0 := dx1 ∧dy1+ . . .+dxn ∧dyn), as well as the projective space (CPn
, ωFS,r)

endowed with the Fubini-Study symplectic two-form. We here normalise ωFS,r so that a
line � ⊂ CPn has symplectic area equal to

∫
�
ωFS,r = πr

2. We also write ωFS := ωFS,1/
√
π.

See Section 2 for more details.
Neck-stretching techniques were successfully used in [6] by K. Cieliebak and K. Mohnke

in order to prove the Audin conjecture, first formulated in [1] by M. Audin: Every La-
grangian torus in Cn or CPn bounds a disc of positive symplectic area and Maslov index
equal to two. The same techniques were also used to deduce properties concerning the fol-
lowing quantity for a Lagrangian submanifold, which was introduced in the same article.
(We here restrict our attention to Lagrangian tori.) Given a Lagrangian torus L ⊂ (X,ω)
inside an arbitrary symplectic manifold, we define

Amin(L) := inf
A∈π2(X,L)∫

A
ω>0

∫
A

ω ∈ [0,+∞].

2010 Mathematics Subject Classification. Primary 53D12; Secondary 53D42.
Key words and phrases. Capacities, Extremal Lagrangian tori, monotone Lagrangian tori.
The author is supported by the grant KAW 2013.0321 from the Knut and Alice Wallenberg Foundation.

This work was done during a visit of the author to the Institut Mittag-Leffler (Djursholm, Sweden).
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This quantity can then be used in order to define a capacity for the symplectic manifold
(X,ω) as follows:

cLag(X,ω) := sup
L⊂(X,ω) Lag. torus

Amin(L) ∈ [0,+∞].

We refer to [6] for the properties satisfied by this capacity. In view of this it is natural to
consider:

Definition 1.1 ([6]). A Lagrangian torus L ⊂ (X,ω) satisfying

Amin(L) = cLag(X,ω)

is called extremal.

The above capacity has been computed only for a limited number of symplectic mani-
folds, notably:

Theorem 1.1 (Theorem 1.1 and Corollary 1.3 in [6]). We have

cLag(B
2n
, ω0) = π/n, (1)

cLag(CP
n
, ωFS,r) = r

2
π/(n+ 1), (2)

and in particular cLag(D
2n
, ω0) = π/n.

A straight-forward calculation shows that the n-dimensional Clifford torus

LCl :=
(
S
1
1
√

n

)n
⊂ S

2n−1 = ∂D
2n ⊂ (Cn

, ω0),

contained inside the boundary of the 2n-dimensional unit disc is extremal. In the case
when n = 1, the Clifford torus is clearly the only extremal Lagrangian torus. Furthermore,
a monotone Lagrangian torus L ⊂ (CPn

, ωFS) is extremal, as follows by elementary
topological considerations together with the fact that there exists a representative of
π2(CP 2

, L) having Maslov index two and positive symplectic area by [6, Theorems 1.1,
1.2]. (For previous related results, consider [23], [19], [18], [12], [4], and [8].)

In [6] the author learned about the following two conjectures, the first one originally
due to L. Lazzarini:

Conjecture 1.2. All extremal Lagrangian tori L ⊂ (D2n
, ω0) are contained inside the

boundary ∂D
2n = S

2n−1.

Conjecture 1.3. All extremal Lagrangian tori L ⊂ (CPn
, ωFS) are monotone.

Our main result is a positive answer to Conjecture 1.2 in dimension four.

Theorem 1.2. All extremal Lagrangian tori L ⊂ (D4
, ω0) are contained inside the bound-

ary, i.e. L ⊂ S
3 = ∂D

4.

After a consideration of the possible Lagrangian tori inside the three-dimensional unit
sphere using classical techniques, we also obtain the following classification result.
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An introduction to tangle Floer homology

Ina Petkova and Vera Vértesi

Abstract. This paper is a short introduction to the combinatorial version of tangle
Floer homology defined in [PV14]. There are two equivalent definitions—one in terms
of strand diagrams, and one in terms of bordered grid diagrams. We present both,
discuss the correspondence, and carry out some explicit computations.

1. Introduction

Knot Floer homology is a categorification of the Alexander polynomial. It was intro-
duced by Ozsváth–Szabó [OS04] and Rasmussen [Ras03] in the early 2000s. One associates

a bigraded chain complex ĈFK(H) over F2 to a Heegaard diagram H = (Σ,α,β, z,w)
for a link L. The generators are combinatorial and can be read off from the intersections
of curves on the Heegaard diagram, whereas the differential counts pseudoholomorphic

curves in Σ× I ×R satisfying certain boundary conditions. The homology of ĈFK(H) is

an invariant of L denoted ĤFK(L).
Knot Floer homology is a powerful link invariant—it detects genus, detects fiberedness,

and an enhanced version called HFK− contains a concordance invariant τ(K) ∈ Z, whose
absolute value bounds the 4-ball genus of K, and hence the unknotting number of K.

Combinatorial versions of knot Floer homology [MOS09, MOST07] were defined soon
after the original construction, but they were still global in nature, and our understanding
of how local modifications of a knot affect HFK was very limited [Man07, OS07].

In [PV14], we “localize” the construction of knot Floer homology, and define an in-
variant of oriented tangles. Although we develop a theory for oriented tangles in general
3-manifolds with spherical boundaries by using analysis similar to [LOT08, LOT10], in
this paper we will focus on a completely combinatorial construction for tangles in B

3 and
I × S

2 (we’ll think of those as tangles in I × R2).
An (m,n)-tangle T is a proper, smoothly embedded oriented 1–manifold in I × R2,

with boundary ∂T = ∂
LT � ∂

RT , where ∂
LT = {0} × {1, . . . ,m} × {0} and ∂

RT =
{1} × {1, . . . , n} × {0}, treated as oriented sequences of points; if m or n is zero, the
respective boundary is the empty set. A planar diagram of a tangle is a projection to
I × R × {0} with no triple intersections, self-tangencies, or cusps, and with over- and
under-crossing data preserved (as viewed from the positive z direction). The boundaries

Key words and phrases. tangles, knot Floer homology, TQFT.
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of T can be thought of as sign sequences

−∂
LT ∈ {+,−}m, ∂

RT ∈ {+,−}n,

according to the orientation of the tangle at each point (+ if the tangle is oriented left-
to-right, − if the tangle is oriented right-to-left at that point). See for example Figure 1.
Given two tangles T and T ′ with ∂

RT = −∂
LT ′, we can concatenate them to obtain a

Figure 1. A projection of a (3, 1)-tangle T to I × R. Here −∂
LT =

(−,−,+) and ∂
RT = (−).

new tangle T ◦ T ′, by placing T ′ to the right of T .
We associate a differential graded algebra called A−(P ) to a sign sequence P ∈

{+,−}n, and a type DA bimodule CT−(T) over (A−(−∂
LT ), A−(∂RT )) to a fixed de-

composition T of an (m,n)-tangle T . These structures come equipped with a grading M

by Z, called the Maslov grading, and a grading A by 1
2Z, called the Alexander grading.

Setting certain variables Ui in CT− to zero, we get a simpler bimodule C̃T, which we
prove in [PV14] to be an invariant of the tangle T (there is evidence suggesting that CT−

is an invariant too, but we do not at present have a complete proof). Gluing corresponds
to taking box tensor product, and for closed links the invariant recovers HFK:

Theorem 1.1. Given an (l,m)-tangle T1 with decomposition T1 and an (m,n)-tangle T2
with decomposition T2 with ∂

RT1 = −∂
LT2, let T = T1T2 be the corresponding decompo-

sition for the concatenation T1 ◦ T2. Then there is a bigraded isomorphism

CT−(T1)�A−(∂RT1) CT
−(T2) � CT−(T).

Regarding an l-component link L (with some decomposition L) as a (0, 0)-tangle, we have

CT−(L)[−l/2]{−l/2} � gCFK−(L)⊗ (F2[−1/2]⊕ F2[1/2]),

where [i] denotes a Maslov grading shift down by i, and {j} an Alexander grading shift

down by j.

We define CT− combinatorially, by means of bordered grid diagrams, or, equivalently,
strand diagrams.

1.1. Outline

In Section 2 we describe the two constructions for CT− and discuss their correspon-
dence. Section 3 contains a couple of small explicit computations (a cap and a cup, which
glue up to the unknot).
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Thoughts about a good classification of manifolds

Matthias Kreck

Abstract. “Good” is a matter of taste. But there are mathematical concepts which
most mathematicians agree on that they are good. For example if one wants to
classify complex vector bundles it seems to be a good idea to look at isomorphism
classes of vector bundles modulo addition of trivial vector bundles. The resulting set
of equivalence classes is denoted by K̃0(X), and for compact spaces this is a group

under the operation of Whitney sum. Another reason why it is good, is that K̃0(X)
is the degree 0 subgroup of a generalized cohomology theory which allows an attack
by the standard tools of algebraic topology like exact sequences or spectral sequences.

In this note we take this as a model for the classification of closed connected
manifolds. In analogy to the vector bundles we consider diffemorphism classes of
smooth manifolds modulo connected sum with a “trivial” manifold T . Whereas we
don’t see a good candidate for T for odd dimensional manifolds, we take T = Sn

×Sn

in even dimensions and pass to what we call the reduced stable diffeomorphism classes
of manifolds. In contrast to vector bundles the reduced stable diffeomorphism classes
of smooth manifolds don’t form a group. But we will see that they decompose as
quotients of groups by a linear action of another group. Most of the results in this
note are not new, they are all based on the results of my papers [13], [14]. But we
add a perspective which readers might find good.

1. The model K-theory

Let X be a compact topological space. We denote the set of isomorphism classes of
finite dimensional complex vector bundles over X by V ect(X). This is a monoid under the
Whitney sum. Computations of V ect(X) are at present not accessible, even in the case of
spheres, where it is equivalent to the computation of (unstable) homotopy groups of the
orthogonal groups O(n). But if k > n, the set of isomorphism classes of k-dimensional
vector bundles over S

n can be computed. The set is independent of k > n and was
computed by Bott with his periodicity theorem: It is trivial if n is odd, and Z if n is even.

More generally, if one considers for a compact space X the equivalence relation re-

duced stable equivalence, which means that two complex vector bundles E and E
′

are reduced stably equivalent, if there are integers k and l, such that E ⊕ Ck ∼= E
′ ⊕ Cl,

the reduced stable equivalence classes form a group denoted by K̃
0(X). The point here

is that all finite dimensional vector bundles can be embedded into a trivial vector bundle,
which implies that if the addition on the reduced stable equivalence classes is induced by

The author would like to thank the Hausdorff Center for Mathematics and the Max Planck Institut
für Mathematik in Bonn for its support while this work was completed.
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the Whitney sum, all vector bundles have an inverse in K̃
0(X). Using Bott periodicity

Atiyah and Hirzebruch [2], [1] extend this to a reduced generalized cohomology theory

K̃
∗(X).
It would be nice to define a similar relation on the set of diffeomorphism classes of closed

smooth connected manifolds of a fixed dimension n, which makes the set of equivalence
classes a group with a geometrically defined group structure. Let’s look at the case
of surfaces. There the obvious candidate for an addition is the connected sum which
should play the role of the Whitney sum for vector bundles. The next step would be to
find a replacement for the trivial bundle, a manifold T : the “trivial manifold” replacing
the trivial vector bundle. Choosing such a T one can call surfaces F and F

′ reduced

T -stably isomorphic if there are integers k and l such that F�kT is diffeomorphic to
F

′
�lT . Now one can look for a T , such that reduced T -stable isomorphism classes form a

group. We would need a neutral element N which means that F�N�kT is diffeomorphic
to F�lT for some k and l, and an inverse, which means that for each F there is an F

′

such that F�F
′
�kT is diffeomorphic to N�lT for some k and l. If we could find such a T

which is orientable, then also N must be orientable and then a non-orientable manifold
has no inverse. Thus one has to take T non-orientable, for example T = RP 2. Then it
works, but the result is disappointing since the resulting group is the trivial group.

But this is the only dimension, where this can work. In dimension n ≥ 3 such a
T cannot exist. If so, there would be a manifold N representing the neutral element.
If we would have a group structure on the reduced stable isomorphism classes for each
closed connected n-manifold M there is a closed n-manifold M

′ - the inverse - such that
M�M

′
�rT ∼= N�lT for some k and l, which alone from the point of view of homology

groups is impossible. Namely, tors H1(T ) and tors H1(N) are finite and so there is
a prime p, such that H1(T ) and H1(N) have no p-torsion, and so a manifold M with
non-trivial p-torsion has no inverse.

2. A weakening of the model of vector bundles

In odd dimensions I don’t have any good idea what to do. But the following result
by Wall about 1-connected oriented 4-manifolds is a guide to a modification. In his case
T = S

2 × S
2. Instead of “reduced S

2 × S
2-stably equivalent” we just write “reduced

stably diffeomorphic”.

Theorem 2.1. [22] Two closed smooth 1-connected oriented 4-manifolds M and M
′ are

reduced stably diffeomorphic if and only

- sign(M) = sign(M’)

- both are Spin or both do not admit a Spin-structure.

This suggests to consider two disjoint subsets of the reduced stable diffeomorphism
classes of closed simply connected 4-manifolds: M(1), the reduced stable diffeomorphism
classes of 1-connected Spin manifolds andM(2), the reduced stable diffeomorphism classes
of 1-connected manifolds admitting no Spin structure. Then Wall’s theorem implies that
both sets are actually groups under the operation given by connected sum, and both are
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Nonexistence of rational homology disk weak fillings
of certain singularity links

Mohan Bhupal and András I. Stipsicz

Abstract. We show that the Milnor fillable contact structures on the links of singu-
larities having resolution graphs from some specific families that have members with
arbitrarily large numbers of nodes do not admit weak symplectic fillings having the
rational homology of the 4-disk. This result provides further evidence toward the
conjecture that no such weak symplectic filling exists once the mininal resolution tree
has at least two nodes.

1. Introduction

Isolated complex surface singularities and their smoothings (if they exist) play an im-
portant role in constructing interesting smooth 4-manifolds. In particular, suppose that
(S, 0) is an isolated surface singularity with resolution graph Γ and M is the Milnor fibre
of a smoothing of S . Suppose, furthermore, that (X,ω) is a symplectic 4-manifold and
C1, . . . , Cn ⊂ (X,ω) are symplectic submanifolds intersecting each other according to Γ
(and ω -orthogonally). It was shown in [13] that

Z = (X − ν(C1 ∪ . . . ∪ Cn)) ∪M

is also symplectic. In many cases the underlying smooth structure is exotic, that is, home-
omorphic but not diffeomorphic to some standard smooth 4-manifold. This construction
was discovered and exploited by Fintushel and Stern [6] (and extended by J. Park [15])
for cyclic quotient singularities and Milnor fibres admitting the rational homology of a
disk — this is Fintushel and Stern’s rational blow-down procedure.

A smoothing with Milnor fibre M satisfying H∗(M ;Q) ∼= H∗(D
4;Q) is called a rational

homology disk smoothing (or QHD smoothing for short). The list of singularities with
QHD smoothings was conjectured by Wahl (cf. [8]); this conjecture was verified in [2] for
weighted homogeneous singularities, that is, singularities which admit resolution graphs
with one node. (Recall that a node in a graph in this context means a vertex with
valency at least three.) Using different methods, this result was extended by Wahl [18]
to singularities with resolution graphs having two nodes, each with valency 3. In [14] a
complete solution of the problem is claimed: it is shown that a singularity with minimal
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resolution graph admitting at least two nodes does not have a QHD smoothing, hence
the result of [2] implies the resolution of Wahl’s conjecture.

In fact, the result verified in [2] is slightly stronger: the argument provides a classification
of resolution graphs with one node which are rational and for which the corresponding
Milnor fillable contact structure on the link admits a weak symplectic QHD filling. (The
methods of [18] and [14], being algebro-geometric in nature, do not provide any informa-
tion about weak symplectic fillings.) For completeness, let us recall the definition of weak
and strong symplectic fillings (cf. also [7, Definition 5.1.1] or [12, Definition 12.1.1]).

Definition 1.1. For a given contact 3-manifold (Y, ξ) (where ξ is assumed to be coori-
ented), the compact symplectic 4-manifold (X,ω) is a weak symplectic filling if
∂X = Y as oriented manifolds (where X is oriented by the volume form ω ∧ ω ), and
ω|ξ > 0. The compact symplectic 4-manifold (X,ω) is a strong symplectic filling if
∂X = Y and there is a Liouville vector field V on X near ∂X satisfying ξ = ker(ιV ω|TY ) .
Here ιV ω denotes the contraction of the 2-form ω with the vector field V and the vector
field being Liouville means that the Lie derivative LV ω of the 2-form ω along V is ω .

Remark 1.2. Obviously a strong filling is a weak filling; moreover, for a strong filling
the symplectic structure ω of the filling near the boundary ∂X is exact. According to [4,
Proposition 3.1] (see also [5, Lemma 2.1] or [10]) this is essentially the only obstruction
for a weak filling to be strong: if ω is exact near ∂X then (according to [4]) we can

attach a topologically trivial symplectic cobordism (X̃, ω̃) to (∂X, ω) which is now a
strong symplectic filling of (Y, ξ) . Notice that if b1(Y ) = 0 (as will be always the case
for the 3-manifolds considered in the following), then the exactness hypothesis near ∂X

is automatically satisfied.

The argument presented in [17] shows that if Γ is the resolution graph of a singularity
with Milnor fillable contact structure admitting a weak symplectic QHD filling and Γ
admits more than one node, then Γ is a member of one of the inductively defined families
A , B or C of graphs described in [17]. (Here we will not repeat the simple definition of
the graph families, see [17] or [14].)

In the present work we describe three families of resolution graphs ΓC
n , ΓB

n and ΓA
n (one

from each of the families C , B and A of [17])), such that Γ∗
n (with ∗ = C,B,A) has n+2

nodes and, although infinitely many of them pass the combinatorial constraints of [16, 17],
the corresponding Milnor fillable contact structures on the plumbing 3-manifolds admit
no weak symplectic QHD fillings (with the additional assumption n �= 0, 3, 5 or 6 for
the family ΓA

n ). The proof slightly extends the idea of the proof of the main result of [2],
and relies on the same fundamental theorem of McDuff concerning symplectic 4-manifolds
containing symplectic spheres of self-intersection +1.

The novelty of the present work is that in [2] we managed to find a concave filling of
the Milnor fillable contact 3-manifold at hand that was diffeomorphic to the tubular
neighbourhood of a configuration of J -holomorphic curves (for some almost complex
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Non semi-simple TQFTs from unrolled quantum sl(2)

Christian Blanchet, Francesco Costantino, Nathan Geer, and Bertrand Patureau-Mirand

Abstract. Invariants of 3-manifolds from a non semi-simple category of modules over
a version of quantum sl(2) were obtained by the last three authors in [4]. They are
invariants of 3-manifolds together with a cohomology class which can be interpreted as
a line bundle with flat connection. In [1] we have extended those invariants to graded
TQFTs on suitable cobordism categories. Here we give an overview of constructions
and results, and describe the TQFT vector spaces. Then we provide a new, algebraic,
approach to the computation of these vector spaces.

Introduction

New quantum invariants of 3-manifolds equipped with 1-dimensional cohomology
classes over C/2Z, or equivalently C∗ flat connections, have been constructed in [4] from
a variant of quantum sl(2). This family of invariants is indexed by integers r ≥ 2, r �≡ 0
mod 4, which gives the order of the quantum parameter. In the case r ≡ 0 mod 4, we
have obtained in [2] invariants of 3-manifolds equipped with generalised spin structures
corresponding to certain flat connections on the oriented framed bundle. These invariants
are built from surgery presentations and have common flavor with the famous Witten-
Reshetikhin-Turaev quantum invariants, but are indeed very different. First, they are
defined for 3-manifolds equipped with cohomology classes, and second they use a stronger
version of quantum sl(2) which in particular avoids the semi-simplification procedure re-
quired for producing modular categories. To emphasize the power of these new invariants
we quote that for the smallest root of unity, r = 2, themultivariable Alexander polynomial
and Reidemeister torsion are recovered, which allows us to reproduce the classification of
lens spaces, see [1].

The TQFT extension of these invariants has been carried out in [1]. The main achieve-
ment is a functor on a category of decorated cobordisms with values in finite dimensional
graded vector spaces. An object in this category is a surface equipped with the following
data: a base point on each connected component, a possibly empty set of colored points, a
1-dimensional cohomology class over C/2Z and a Lagrangian subspace. A morphism is a
cobordism with: a colored ribbon graph, a cohomology class and a signature defect which
all satisfy certain admissibility conditions. A description of these TQFT vector spaces
split into two cases, depending on whether the cohomology class is integral or not. In
the non-integral case, it can be done using colored trivalent graphs with a pattern similar
to the Witten-Reshetikhin-Turaev case. In the integral case we are able to prove finite
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dimensionality in general and to provide a Verlinde formula for their graded dimension
under the further assumption that the surface contains a point with a projective color.
A new result in this paper is an Hochschild homology description of the TQFT vector
spaces. In the integral case, our statement is proved under the previous assumption.

1. Unrolled quantum sl(2) and modified trace invariant

In this section we recall the unrolled quantum sl(2) at a root of unity. In the whole
paper, r ≥ 2 is an integer which is non zero modulo 4, r′ = r if r is odd and r′ = r

2 else.

Let q = e
iπ
r , qx = e

ixπ
r for x ∈ C. Recall (see [5]) the C-algebra U

H

q sl(2) given by

generators E,F,K,K−1, H and relations:

KEK−1 = q2E, KFK−1 = q−2F, [E,F ] =
K −K−1

q − q−1
, Er = 0,

HK = KH, [H,E] = 2E, [H,F ] = −2F, F r = 0.

The algebra U
H

q sl(2) is a Hopf algebra where the coproduct, counit and antipode are
defined in [5]. A weight module is a finite dimensional module which splits as a direct
sum of H-weight spaces and is such that K acts as qH .

The category C of weight modules is C/2Z-graded (by the weights modulo 2Z) that is
C =

⊕
α∈C/2Z Cα and ⊗ : Cα ×Cβ → Cα+β . The category C is a ribbon category and we

have the usual Reshetikhin-Turaev functor from C -colored ribbon graphs to C (which is
given by Penrose graphical calculus).

The simple modules in C are highest weight modules with any complex number as
highest weight. The generic simple modules are those which are projective. They are
indexed by the set

C̈ = (C \ Z) ∪ rZ.

For α ∈ C̈, the r-dimensional module Vα ∈ Cα+r−1 is the irreducible module with highest
weight α+ r − 1.

The group of invertible modules is generated by the one dimensional vector space
denoted by ε = Cr with H-weight equal to r and degree equal to r modulo 2. The
subgroup of invertible objects with trivial degree is generated by σ = C2r′ , the one
dimensional vector space with H-weight equal to 2r′ (if r is even then σ = ε). For each
integer j, 0 ≤ j ≤ r − 1 the simple module with highest weight j is j + 1 dimensional.
For 0 ≤ j < r − 1 it is not projective, but has a 2r-dimensional projective cover Pj . The
non simple indecomposable projective modules are the Pj ⊗ C⊗k

r , 0 ≤ j < r − 1, k ∈ Z.
The link invariant underlying our construction is the re-normalized link invariant ([8])

that we recall briefly. The modified dimension is the function defined on {Vα}α∈C̈ by

d(α) = (−1)r−1 r{α}
{rα} ,

where {α} = 2i sin πα
r . Let L be a C -colored oriented framed link in S3 with at least one

component colored by an element of {Vα : α ∈ C̈}. Opening such a component of L gives
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Choi, Keon Renyi Institute of Mathematics, Hungary
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