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Introduction

The equations describing the motion of a perfect fluid were first formulated by
Euler in 1752 (see [9], [10]), based, in part, on the earlier work of D. Bernoulli
[1]. These equations were among the first partial differential equations to be writ-
ten down, preceded, it seems, only by D’Alembert’s 1749 formulation [8] of the
1-dimensional wave equation describing the motion of a vibrating string in the
linear approximation. In contrast to D’Alembert’s equation, however, we are still,
after the lapse of two and a half centuries, far from having achieved an adequate
understanding of the observed phenomena which are supposed to lie within the
domain of validity of Euler’s equations.

The phenomena displayed in the interior of a fluid fall into two broad classes,
the phenomena of sound, the linear theory of which is acoustics, and the phenom-
ena of vortex motion. The sound phenomena depend on the compressibility of a
fluid, while the vortex phenomena occur even in a regime where the fluid may
be considered to be incompressible. The formation of shocks, the subject of the
present monograph, belongs to the class of sound phenomena, but lies in nonlinear
regime, beyond the range covered by the linear acoustics.

Let us make a short review of the history of the study of the sound phenomena
in fluids, in particular the phenomena of the formation of shocks in the nonlinear
regime. At the time when the equations of the fluid motion were formulated, ther-
modynamics was in its infancy, however, it was already clear that the local state of
a fluid as seen by a comoving observer is determined by two thermodynamic vari-
ables, say pressure and temperature. Of these, only pressure entered the equations
of motion, while the equations involve also the density of the fluid. Density was
already known to be a function of pressure and temperature for a given type of
fluid. However, in the absence of an additional equation, the system of equations
at the time of Euler, which consisted of the momentum equations and the equa-
tion of continuity, was underdetermined, except in the incompressible limit. The
additional equation was supplied by Laplace in 1816 [13] in the form of what was
later to be called adiabatic condition, and allowed him to make the first correct
calculation of the sound speed.

The first work on the formation of shocks was done by Riemann in 1858 [17].
Riemann considered the case of isentropic flow with plane symmetry, where the
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equations of fluid mechanics reduces to a system of conservation laws for two
unknowns and with two independent variables, a single space coordinate and time.
He introduced for such systems the so-called Riemann invariants, and with the help
of these showed that solutions which arise from smooth initial conditions develop
infinite gradients in finite time.

In 1865 the concept of entropy was introduced into theoretical physics by Clau-
sius [7], and the adiabatic condition was understood to be the requirement that
the entropy of each fluid element remains constant during its evolution.

The first general result on the formation of singularity in 3-dimensional fluids
was obtained by Sideris in 1985 [18]. Sideris considered the compressible Euler
equations in the case of a classical ideal gas with adiabatic index γ > 1 and
with initial data which coincide with those of a constant state outside a ball. The
assumptions of his theorem on the initial data were that there is an annular region
bounded by the sphere outside which the constant state holds, and a concentric
sphere in its interior, such that a certain integral in this annular region of ρ− ρ0,
the departure of the density ρ from its value ρ0 in the constant state, is positive,
while another integral in the same region of ρvr, the radial momentum density, is
non-negative. These integrals involve kernels which are functions of the distance
from the center. It is also assumed that everywhere in the annular region the
specific entropy s is not less than its value s0 in the constant state. The conclusion
of the theorem is that the maximal time interval of existence of a smooth solution
is finite. The chief drawback of this theorem is that it tells us nothing about the
nature of the breakdown. Also the method relies the strict convexity of the pressure
as a function of density displayed by the equation of state of an ideal gas, and does
not extend to more general equation of state.

The most recent and complete results on the formation of shocks in three
dimensional fluids were obtained by Christodoulou in 2007 [5]. Christodoulou con-
sidered the relativistic Euler equations in three space dimensions for a perfect
fluid with an arbitrary equation of state. He considered the regular initial data on
a spacelike hyperplane Σ0 in Minkowski spacetime which outside a sphere coin-
cide with the data corresponding to a constant state. He considered the restriction
of the initial data to the exterior of a concentric sphere in Σ0 and the maximal
classical development of this data. Under suitable restriction on the size of the
departure of the initial data from those of the constant state, he proved certain
theorems which give a complete description of the maximal classical development.
In particular, theorems give a detailed description of the geometry of the bound-
ary of the domain of the maximal classical solution and a detailed analysis of the
behavior of the solution at this boundary.

The aim of the present monograph is to derive analogous results for the clas-
sical, non-relativistic, compressible Euler’s equations taking the data to be irro-
tational and isentropic, and to give a proof of these results which is considerably
simpler and completely self-contained. The present monograph in fact not only
gives simpler proofs but also sharpens some of the results. In addition the present
monograph explains in depth the ideas on which the approach is based. Finally
certain geometric aspects which pertain only to the non-relativistic theory are
discussed.
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We shall presently explain the basis of the approach of the present monograph
(also of the previous one dealing with the relativistic case). This basic idea can
be thought as an extension of the method of Riemann invariants combined with
the method of the partial hodograph transformation, to the case of more than one
space dimension. We first recall some basic facts about Riemann invariants. In the
case of one space dimension, the isentropic Euler system reads

∂tρ+ ∂x(ρv) = 0

∂tv + v∂xv = −1

ρ
∂xp

and it can be written as a single equation of the velocity potential φ:

(g−1)μν∂μ∂νφ = 0

or, setting ψμ = ∂μφ,

(g−1)μν∂μψν = 0

where g is the following Lorentzian metric on the spacetime manifold M:

g = −η2dt2 + (dx − vdt)2.

Here

v = −ψx

is the fluid velocity and

h = ψt −
1

2
ψ2

x

is the enthalpy. The pressure p is a given function of h and

ρ = dp/dh

while the sound speed η is given by

η2 = dp/dρ

Riemann invariants are the functions R1, R2 defined on the cotangent space
T ∗pM, which are the two functionally independent solutions of the following eikonal
equation:

gμν
∂R

∂ψμ

∂R

∂ψν
= 0

i.e.

−η2(
∂R

∂ψt
)2 + (

∂R

∂ψx
+ ψx

∂R

∂ψt
)2 = 0
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We define the vectorfields N1, N2 on M by

N1 :=
∂R1

∂ψμ

∂

∂xμ
, N2 :=

∂R2

∂ψμ

∂

∂xμ

These are null vectorfields with respect to g. We choose R1 and R2 so that the in-
tegral curves of N1 and N2 are the incoming and outgoing null curves respectively.
Then R1, R2 as functions on M satisfy

N2R1 = 0, N1R2 = 0 (1)

Let us introduce the acoustical coordinates (t, u) so that u is constant along the
outgoing null curves. Then the vectorfields

L =
∂

∂t
, L = η−1κL+ 2T

where

T =
∂

∂u
and κ = −∂x

∂u
(2)

are null vectorfields with respect to g, and the integral curves of L and L are
outgoing and incoming null curves respectively. Therefore L and L are colinear to
N2 and N1 respectively. Therefore Equations (1) are equivalent to

LR1 = 0, LR2 = 0 (3)

To write down explicit expressions for R1, R2 we use, instead of (ψt, ψx), the
following variables in T ∗pM:

h = ψt −
1

2
ψ2

x, v = −ψx

Then for any function f = f(h, v) defined on T ∗pM, we have

∂f

∂ψx
+ ψx

∂f

∂ψt
= −∂f

∂v

Let us introduce a function r = r(h) by

dr

dh
=

1

η
, r(0) = 0

Then

R1 = r + v, R2 = r − v

are the two functionally independent solutions of the eikonal equation, therefore
the two Riemann invariants. From the first equation of (3), we know that

R1 = R1(u)
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is determined by initial data, while to obtain R2, we consider the second equation
of (3), namely the equation

η−1κ
∂R2

∂t
+ 2

∂R2

∂u
= 0

Here κ enters, which is defined by (2). To obtain an equation for κ we consider
the following equations:

∂x

∂t
= c+, c+ = v + η

We shall derive an equation for κ. From (3) we have

∂κ

∂t
= −∂c+

∂u
= −1

2

∂R1

∂u
+

1

2

∂R2

∂u
− dη

dh

∂h

∂u

while

∂h

∂u
=
dh

dr

∂r

∂u
=

1

2
η(
∂R1

∂u
+
∂R2

∂u
)

Substituting the above we obtain

∂κ

∂t
=

1

2
(−1− η dη

dh
)
∂R1

∂u
+

1

2
(1 − η dη

dh
)
∂R2

∂u

Since

∂R1

∂u
=

2

η

∂h

∂u
− ∂R2

∂u

we have

∂κ

∂t
=

1

2η
(−2− 2η

dη

dh
)
∂h

∂u
+
∂R2

∂u

Let us define

H = −2h− η2

Noting that by the second equation of (3)

∂R2

∂u
= − κ

2η

∂R2

∂t

We conclude that κ satisfies the following equation:

∂κ

∂t
= m′ + κe′

with

m′ =
1

2η

dH

dh

∂h

∂u
, e′ = − 1

2η

∂R2

∂t
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The main idea in the 1-dimensional case is thatR1, R2 as well as the rectangular
coordinate x are smooth functions of (t, u). The partial hodograph transformation
is the transformation

(t, u) �−→ (t, x)

from acoustical to rectangular coordinates. The Jacobian is

∂(t, x)

∂(t, u)
=

∣∣∣∣ 1 0
v + η −κ

∣∣∣∣ = −κ

and vanishes when κ vanishes. This means R1, R2 are not smooth in (t, x) when
shocks form.

In the case of more than one space dimension, in particular, the case of three
space dimensions, we do not have Riemann invariants. We work instead with the
first order variations, which are defined through the variation fields :

∂μ, R̊i = εijkx
j ∂

∂xk
, xμ∂μ − I; μ = 0, 1, 2, 3, 1 � i, j, k � 3

Here I is the multiplication operator by 1. These fields are the generators of the
subgroup of the scale-extended Galilean group, the invariance group of the com-
pressible Euler system, which leaves the constant state invariant. These first order
variations satisfy the linear wave equation

�g̃ψ = 0 (4)

where g̃ is the conformal acoustical metric:

g̃ = Ωg, Ω =
ρ

η
, g = −η2dt2 +

∑
i

(dxi − vidt)2

Like the equations satisfied by R1, R2 in the case of one space dimension, Equation
(4) does not depend on the Galilean structure, but depends only on the properties
of (M, g) as a Lorentzian manifold. Actually, it depends more sensitively on the
conformal class of (M, g). This is similar to the fact that in the case of one space
dimension, null curves depend only on the conformal class of the acoustical met-
ric. Also like in the case of one space dimension, we shall work in the acoustical

coordinates (t, u, ϑ). Here u is the acoustical function in M, whose level sets Cu

are outgoing null hypersurfaces. The level curves of ϑ ∈ S
2 on each Cu are the

generators of Cu. Like in the case of one space dimension, we denote by L the
tangent vectorfield of the generator of Cu parametrized by t, and L the incoming
null normals of St,u := Cu

⋂
Σt, whose definitions are formally the same as one

space dimensional case. We also denote by T the tangent vectorfield of the inward
normal curves to the St,u in Σt parametrized by u. Here Σt is the level set of the
function t, which is isometric to the Euclidean space.

To obtain a fundamental energy estimate for this linear equation in (t, u, ϑ),
we need two multiplier vectorfields K0,K1. These are non-spacelike and future-
directed with respect to g (a requirement which actually depends only on the
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conformal class of g). They are linear combinations of L and L, with coefficients
which are smooth in (t, u, ϑ). The concept of multiplier vectorfields originates from
Noether’s theorem [14] on conserved currents. A modern more general treatment
of compatible currents is found in [4]. In order to obtain higher order energy esti-
mates, we consider the nth order variations by applying a string of commutation

vectorfields of length n− 1 to the first order variations:

T, Q := (1 + t)L, Ri = ΠR̊i

Here Π is the orthogonal projection from TpΣt to TpSt,u. Then we obtain an
inhomogeneous wave equation for the nth order variation ψn:

�g̃ψn = ρn (5)

where ρn is determined by the deformation tensors of the commutation vectorfields.
Actually ρn depends on up to the (n − 1)th order derivatives of the deformation
tensors, and ρ1 = 0. The use of commutation fields originates in [12]. Multiplier
fields and commutation fields on general curved spacetimes have first been used in
[6].

After we solve (5) in the acoustical coordinates, we need to go back to the
original rectangular coordinates. Again we must consider the inverse of the trans-
formation:

(t, u, ϑ) �−→ (t, x)

where ϑ ∈ S
2 and x ∈ R

3. This is what replaces the partial hodograph transfor-
mation in higher dimensions. The Jacobian of this transformation is

κ
√

det /g (6)

Here /g is the induced acoustical metric on St,u. So we consider the system satisfied
by the rectangular coordinates on each Cu:

∂xi

∂t
= Li = −ηT̂ i − ψi

which is a fully nonlinear system for xi. Here T̂ is the inward unit normal of St,u in

Σt, whose expression is the ratio of a homogeneous quadratic polynomial in ∂xi

∂ϑA

to the square root of a homogeneous quartic polynomial in ∂xi

∂ϑA . The estimates of
the derivatives of xi reduce to the estimates of the derivatives of χ and μ. These
are defined as follows:

2χ = /LL/g, μ = ηκ

where κ is the magnitude of T . Thus χ is the second fundamental form of St,u in
Cu. Finally the way we estimate χ, μ is to study the geometric structure equations
of the foliation of M by surfaces St,u.

To summarize, in the case of n space dimensions, the role of Riemann invari-
ants is played by the first order variations ψ, which shall be proved to be smooth
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functions of (t, u, ϑ). Moreover, we shall show that the xi are also smooth func-
tions of (t, u, ϑ). This shall be done through estimates on χ and μ based on the
geometric structure equations. One of these equations is the same as in the one
space dimensional case:

Lμ = m+ μe

where

m =
1

2

dH

dh
Th, H = −2h− η2

and

e =
1

2η2
(
ρ

ρ′
)′Lh+

1

η
T̂ i(Lψi)

As a consequence of these facts, the boundary of the maximal classical devel-
opment contains a singular part H, where the Jacobian (6) vanishes. Since

√
det /g

is, by virtue of the estimates for χ, bounded from below by a positive constant, κ,
equivalently μ, vanishes on H. Thus, the inverse of the transformation

(t, u, ϑ) �−→ (t, x)

is not differentiable atH. Therefore the ψ are not differentiable with respect to the
rectangular coordinates at H. Nevertheless, H, the zero-level set of μ, a smooth
function of (t, u, ϑ), is a smooth hypersurface in M relative to the differential
structure induced by the acoustical coordinates. This is because we can show that
Lμ is bounded from above by a strictly negative function at H, therefore H is a
non-critical level set of μ.

The first main result in the present monograph can be thought as an existence
theorem (Theorem 17.1) for the nonlinear wave equation of the velocity potential

(g−1)μν∂μ∂νφ = 0

with small initial data:
The solution of the above nonlinear wave equation can be extended smoothly

to the boundary of the maximal solution in acoustical coordinates (t, u, ϑ), and

the solution is also smooth in rectangular coordinates before μ becomes 0, since the

differential structures induced by acoustical coordinates and rectangular coordinates

are equivalent to each other when μ > 0.
Theorem 17.1 also gives a lower bound for the time when the shock forms

(i.e. μ = 0), and the energy estimates for solution as well as various geometric
quantities associated to the acoustical spacetime (M, g).

Based on this existence theorem, we find some conditions on initial data which
guarantee the formation of shocks in finite time (see Theorem 18.1). The condi-
tions are imposed on a Σt-integral of the following function:

(1− u+ t)Lψ0 − ψ0 (7)
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where

ψ0 := ∂tφ

is one of the first order variations. The principal part of function (7), namely,
(1−u+ t)Lψ0 determines the properties of function m, which, in turn, determines
the formation of shocks. Moreover, the spherical mean of function (7) on St,u

satisfies an ordinary differential inequality in the parameter t. Then we can connect
the properties of m near the point where the shocks form and the properties of
m on the initial hypersurface Σ0 by using this ordinary differential inequality.
Then the necessary properties of m then follow from its properties on the initial
hypersurface Σ0.

Also based on the existence theorem, we can give a geometric description of
the boundary of the maximal classical solution in acoustical differential structure
(Proposition 19.1):

The boundary contains a regular part C, which is an incoming null hypersurface

in (M, g), and a singular part H, on which the function μ vanishes. H is a spacelike

hypersurface in (M, g), and it has the common past boundary with C, denoted by

∂−H, which is a 2-dimensional spacelike surface in (M, g). However, the singular

boundary, from the intrinsic point of view, is a null hypersurface in (M, g), on

which the acoustical metric g degenerates in acoustical coordinates.

The corresponding description of the singular boundary in the standard differ-
ential structure (that is, in rectangular coordinates) is given in Proposition 19.3.

Moreover, we establish a trichotomy theorem (Theorem 19.1) describing the
behavior of the past-directed null geodesics initiated at the singular boundary:

For each point q of the singular boundary, the intersection of the past null

geodesic conoid of q with any Σt in the past of q splits into three parts, the parts

corresponding to the outgoing and to the incoming sets of null geodesics ending

at q being embedded discs with a common boundary, an embedded circle, which

corresponds to the set of the remaining null geodesics ending at q. All outgoing

null geodesics ending at q have the same tangent vector at q.
Finally, considering the transformation from one acoustical function to another,

we show that the foliations corresponding to different families of outgoing null
hypersurfaces have equivalent geometric properties and degenerate in precisely
the same way on the same singular boundary (See Proposition 19.2).

Let us now give an outline of the present monograph. The first four chapters
concern the geometric set up. Then in Chapter 5, we obtain energy estimates for
the linear wave equation associated to the conformal acoustical metric. Chapter
6 deals with the preliminary estimates for the deformation tensor of the commu-
tation vectorfields, the precise estimates of which are given in Chapters 10 and
11. We also introduce the basic bootstrap assumptions on variations as well as on
χ and μ in Chapters 5 and 6. Chapters 8 and 9 are crucial in the whole work,
because it is here that estimates for χ and μ are derived which do not lose deriva-
tives, thus allowing us to close the bootstrap argument. Chapter 8 concerns the
estimates for the top order spatial derivatives of χ. In fact only the top order an-
gular derivatives are involved. While Chapter 9 concerns the estimates for the top
order spatial derivatives of μ. In Chapter 12, based on the bootstrap assumptions
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on variations, we recover the bootstrap assumptions on χ and μ, except C1, C2
and C3, which are recovered in Chapter 13. In Chapter 14, based on a crucial
lemma (Lemma 8.11) established in Chapter 8, we estimate the borderline con-
tribution from the top order spatial derivatives of χ and μ. Then in Chapter 15, we
obtain the energy estimates for the top order variations. These are allowed to blow
up as shocks begin to form. We then revisit the lower order energy estimates and
show that the estimates of each preceding order blow up successively more slowly
until we finally reach energy estimates of a certain order which do not blow up
at all. These bounded energy estimates allow us to close the bootstrap argument
(See Chapters 16 and 17).

In regard to the notational conventions, Latin indices take the values 1, 2, 3,
while Greek indices take the values 0, 1, 2, 3. Repeated indices are meant to be
summed, unless otherwise specified.

Work supported by ERC Advanced Grant 246574 Partial Differential Equations of

Classical Physics.
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