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Preface 

In the early spring of 2013, Lizhen Ji asked me to write comments about my col-
lected or selected works. I was too busy at the time to take on such a task. At one point, 
however, I gave in to his request and decided to write comments about my survey articles. 
Upon tallying them up, I was surprised to see that I had written far more survey articles 
than I had remembered. 

Since I was a child, I have always been interested in history. Hence when I started 
to write these commentaries, I tried to stick to the facts to the best of my memory. I also 
consulted friends who participated in these events and looked at letters and emails that I 
had kept over the past forty years. 

This does not mean that there are absolutely no mistakes in the statements. Never-
theless, I believe that these accounts can be interesting—and maybe even important—for 
students who’d like to know something about how the various papers were written and 
what my friends and I thought about the approaches we took. 

In the course of putting together this collection, I received strong support from 
Lizhen Ji, Hao Xu, Kefeng Liu, Shiu-Yuen Cheng, and Hung-Hsi Wu. I am also very 
grateful to the publishers led by Liping Wang, Yushan Deng, and others. My friend Steve 
Nadis agreed to be the consulting editor for this project. I am extremely thankful for all of 
their help, without which this project likely would not have materialized. 

 
 

Shing-Tung Yau 
June 30, 2014 
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Shing-Tung Yau: His Mathematics and Writings 

Lizhen Ji 

Why selected works? 
There has been a long tradition of publishing collected or selected works of distin-

guished mathematicians. There are several good reasons for doing this, and it has served 
many purposes. Probably the most obvious one is that collected and selected works pro-
vide an easy access to papers that are scattered in different journals, some of which are 
not easily accessible to many people. Otherwise, few people, if any, will take the time and 
trouble to dig up all the papers of their admired mathematicians–especially not those 
papers that are far away from their interests, of their admired mathematicians and read 
them. On the other hand, reading papers of a master dealing with different subjects or 
areas conveys the underlying unity and hence a big picture of mathematics, and it also 
allows one to gain a historical perspective (or to enter the history). In other words, col-
lected and selected works are more than the simple sum of individual papers. 

Indeed, as Abel said famously, we learn “by studying the masters, not their pupils.” 
Even though the world is becoming smaller, few people have many chances to interact 
with masters who are alive. Of course, the next best way to learn from masters is to read 
and study their collected works. 

Naturally, publishing collected or selected works is also an honor to the authors of 
these papers. It should be mentioned that collected works of some people can bring 
honor of the genre of collected works. 

Now, with the wide and easy use of e-papers and e-books, most papers in journals 
can be obtained easily online, and a mere reprinting of papers is probably not as valuable 
as before. Of course, the value of selected works still stands. For example, holding and 
reading a beautifully printed book is definitely different from viewing papers online or on 
e-book readers. But they should also provide something else. Several additional things 
seem to be reasonable: descriptions of how ideas in the paper were formed and time and 
place the papers were written, relations between papers with the advantage of hindsight, 
and developments of subjects after the papers were published, and visions for the future. 
In other words, they should explain the circumstances of the birth of papers and proper, 
impacts of the papers, and fitting these papers in the grand scheme of mathematics. 

These additional things are especially important to beginners, non-experts and even 
some experts. Most people often concentrate on the best known theorems and most im-
portant papers of great mathematicians, but even masters struggled and stumbled some-
times on their mathematical trips. How they found good problems and their ways in their 
careers, made progress and reached peaks is best described by their own papers, recollec-
tions and commentaries, but not textbooks where everything is polished and presented in 
a streamlined matter, without mentioning that textbooks and research books might not 
cover some gems in the original papers that are not directly related to the themes of the 
books. But many people, especially younger ones, often prefer to read polished textbooks. 
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Of course, reading mathematics papers can be difficult (more difficult than reading text-
books), and proper arrangement of related papers and additional guides from the masters 
are certainly valuable and helpful. Such collected or selected works of distinguished 
mathematicians often tell good stories of the authors and their mathematics, and brows-
ing through them can be enjoyable and beneficial to people who are not interested in 
some specific results in the papers. 

In these works of expository writings of Shing-Tung Yau, all these things are 
printed together with his survey papers and papers on open problems. One reason for 
restricting these volumes to expository papers of Yau is practical. Yau has been very crea-
tive and prolific. The collected works including all his papers (both research and exposi-
tory papers) up to now will occupy too many volumes. Besides, he is also still very active 
and productive, and the time for collected works may not be ripe yet. 

Why expository writing? 
Probably some explanation is needed for publishing these volumes of expository 

writings of Yau now. Briefly, it is the right time for Yau to share his perspectives and his 
vision on the broad area of geometric analysis, and his expository writings provide a 
unique means to this end. They will render a valuable service to the mathematics com-
munity. 

Colloquium talks have been a common means of communication between mathe-
maticians from different subjects, after they were made successful and popular by Klein 
and Hilbert in Göttingen about 100 years ago. More expository talks such as “Basic no-
tion seminars” and “What is...?” have also sprung up in many places. They provide effec-
tive ways for people to learn and enjoy some beautiful pieces of mathematics, which are 
outside their fields of specialty. Though there are many books and papers dealing with all 
kinds of subjects in mathematics, one difficulty is that there are too many of them. It is 
difficult for people to find the right books and papers, and people may lack the motiva-
tion to read mathematics outside their specialties, especially when they involve difficult 
and technical material. Many people choose to study mathematics not for fame or fortune, 
but for the beauty and enjoyment of the discipline. To really appreciate the beauty and 
power of mathematics, one has to roll up one’s sleeves and do the work. But not many 
people can work in many different subjects in mathematics. In the history of mathematics, 
only a few people have been universal mathematicians. Some obvious names in the recent 
times include Gauss, Riemann, Poincaré, Hilbert, Weyl, and Hadamard. In spite of the 
difficulties, one can still enjoy and appreciate many facets of the rich world of mathemat-
ics by listening to expository talks and talking to experts. In the abstract world of 
mathematics, direct interaction and communication is still vital, and the virtual internet is 
no replacement yet. 

Next to listening to talks, one can try to read expository writings and informal 
comments and notes on technical papers. The former is like colloquium talks, and the 
latter is like conversations at the colloquium tea or dinner. Expository writings include 
books, survey papers and descriptions of open problems. It often happens that expository 
writings are less valuable in a short period than highly technical and original papers, 
which can give people priorities and more credit. But in the long run, books and exposi-
tory papers might be read by more people and have a bigger and longer impact. Think of 
Euler. How many of his papers are still read by people now? But his two elementary 
books on analysis and algebras are still printed and read by many people. What about 
Hilbert? His paper on the open problems and his report (or survey) on algebraic number 
theory are probably most read among his papers. Among contemporary mathematicians, 
we can think of the expository writings of people such as Atiyah, Milnor and Serre, which 
have had a huge impact on the modern mathematics. Though not everyone likes every 
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2 Commentary

At that time, I had just finished my work with Richard Schoen on the struc-
ture of three manifolds with positive scalar curvature, which is related to the
positive mass conjecture. I gave a talk on this, and B. Lawson showed great in-
terest in it. R. Schoen and I were also in the process of writing up a proof, which
demonstrated that in the category of manifolds with positive scalar curvature, it is
possible to perform surgery with codimension not less than three that preserved the
property of admitting such metrics. This paper appeared in Manuscripta Math. in
1979. I mentioned our results to B. Lawson before it was published. A year later,
B. Lawson wrote a paper that appeared in the Annals of Math 1980 with Mikhael
Gromov on a different way to perform such a surgery. (It was later discovered
that there were some mistakes in the formula they used, although they may have
been corrected by now.) R. Schoen and I realized its importance for studying
the topology of manifolds with positive scalar curvature, but we did not know the
right experts on spin cobordism to transform the surgery result to provide effective
classification for simply connected manifolds with positive scalar curvature.

Shing-Tung Yau
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Métriques de Kähler-Einstein Sur les

Variétés Ouvertes∗†

Shing-Tung Yau‡

1. On va s’intéresser à trouver des métriques de Kähler-Einstein sur des
variétés ouvertes (par exemple des domaines bornés de Cn). Calabi a ramené la
recherche des telles métriques pour certains domaines à l’étude de l’équation de
Monge-Ampère réellè sur Rm

det
∂2u

∂xi∂xj
= 1. (1)

L’étude de cette équation est le cadre de la géométrie dite “affine” puisque
l’opérateur est invariant sous le groupe slm(R).

Théorème 2: Si u est une fonction convexe définie sur Rm, la seule solution
de (1) est un polynôme quadratique.

Le cas m = 2 est dû à Jörgens, le cas m � 5 à Calabi (cf.[1]) et les
généralisations à Pogorelov. Après Pogorelov, Cheng et Yau (cf.[2]) ont donné
une preuve analytique différente de celle de Pogorelov.

3. En considérant le graphe de u, on définit une métrique affine invariante par

slm+1(R) par
∑

uijdx
i⊗dxj (on note uij =

∂2u
∂xi∂xj ); la formule est plus compliquée

si det uij �= 1.

On veut montrer que u est un polynôme du second degré, donc que
m∑

i,j,k=1

u2
ijk=

0. La meilleure méthode consiste à considérer uijk comme 3-tenseur sur une variété
et à travailler dans la métrique définie par u. On considère donc

S =
∑

uirujsuktuijkurst.

(pour le cas complexe on prendra

S =
∑

uirujsuktuijkurst).

4. Dans le cas complexe, on considère l’équation sur Cn

det
∂2u

∂zi∂zj
= 1.

∗Notes de J. P. Bourguignon
†S. T. Yau, Métriques de Kähler-Einstein sur les varietes ouvertes, Asterisque, 58 (1978),

163–167.
‡Department of Mathematics, Stanford University et I. H. E. S.





7



8 Commentary

student that this conjecture could offer some good insights into minimal surfaces
in a sphere. The conjecture is still not solved. But Choi and Wang took some
steps towards a solution ten years later, making a substantial contribution to the
theory of minimal surfaces in a sphere.

Shing-Tung Yau
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The Classical Plateau Problem and the

Topology of 3-manifolds∗

William H. Meeks III†, Shing-Tung Yau‡

It was an old problem whether there is a disk with least area bounding a given
closed curve in R3. This was solved about forty years ago by Douglas and Rado
in a somewhat generalized sense. Only in 1969 Osserman proved that the solution
of Douglas has no branch points in the interior. Later Gulliver even proved that
there is no false branch point. Hence, the Douglas solution is an immersion of the
disk.

It was a general question whether the solution is actually embedded when γ
is a Jordan curve on the boundary of a convex region. In this note, we announce
a solution of this problem in the more general case when γ lies on the convex
boundary of a three-dimensional manifold. This provides an interesting proof of
Dehn’s lemma and the sphere theorem in 3-manifold theory. Some other new
results in 3-manifold theory can also be proved with our approach.

For simplicity, all curves are C3 and all manifolds are smooth. If γ is a Jordan
curve in a Riemannian 3-manifold M3 then we will call a conformal mapping
f : D2 → M3 a Douglas-Morrey solution on Plateau’s problem if f has least
energy with respect to all piecewise smooth mappings of the disk D2 into M3 such
that f |∂D2 is a monotonic parameterization of γ.

Theorem 1. If M3 is a compact Riemannian 3-manifold with convex boundary
and γ is a Jordan curve on the boundary which contracts to a point in M3, then
there exists a Douglas-Morrey solution to Plateau’s problem for γ.

Remark 1. The compactness of M3 can be replaced by a Morrey type condition
that M3 is homogeneous regular. The above theorem is a consequence of Morrey’s
solution of Plateau’s problem.

Theorem 2. If M3 is a Riemannian 3-manifold with convex boundary, γ is a
Jordan curve on the boundary. and f : D2 →M3 is a Douglas-Morrey solution to
Plateau’s problem then f is an embedding.

It should be noted that the fact that the above f is an immersion was proved
by R. Ossermann [3] for curves in R3 and by R. Gulliver [1] for curves in general

∗William H. Meeks III, Shing-Tung Yau, Minimal Submanifolds and Geodesics, Kaigai PUb-
lications, Tokyo, 1978, 101–102.

†This research was supported in part by NSF Grant No. Mcs76-07147.
‡This author was supported by the Sloan Fellowship.
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Geometric Bounds on the Low

Eigenvalues of a Compact Surface∗

R. Schoen†, S. Wolpert, S. T. Yau

In this note we announce upper and lower bounds for the low eigenvalues
of a negatively curved compact surface in terms of the lengths of certain families
of geodesics (Main Theorem). Let M be a compact oriented surface of genus
g > 1 endowed with a metric of Gauss curvature K satisfying −1 � K � −k
for some constant k > 0. Let 0 = λ0 < λ1 � λ2 � · · · be the eigenvalues of
the Laplace operator on M acting on functions. Our main result says that for
1 � n � 2g − 3, λn is bounded above and below by positive constants (depending
on g and k) times the length of the shortest subdivision of M into n + 1 pieces
by simple closed geodesics. Also, it follows that λ2g−2 has positive upper and
lower bounds depending on g, k. Basically, our results say that λn can be small
only for a surface which is nearly divided into n + 1 pieces, each piece having
negative Euler characteristic. Since one can construct surfaces having specified
lengths for the disjoint simple closed Poincaré geodesics, it follows that for any n
with 1 � n � 2g − 3, there exists a sequence of surfaces of genus g and K ≡ −1
so that λn tends to zero and λn+1 has a positive lower bound. We only sketch a
proof of our result in this note. Full details will appear elsewhere.

For 1 � n � 2g − 3, we consider the family of curves which consist of a
disjoint union of simple closed geodesics dividing M into n + 1 components. We
let cn denote the class of all such curves. Define a number �n by

�n = min{L(C) : C ∈ cn}

where L(C) is the length of C. We now state our main result.
Main Theorem. Let M be a compact oriented surface of genus g > 1

with a metric of Gauss curvature K. Suppose for some constant k > 0 we have
−1 � K � −k. There exist positive constants α1, α2 depending only on g such
that for 1 � n � 2g − 3, we have α1k

3/2�n � λn � α2�n and α1k � λ2g−2 � α2.
We outline the main steps in the proof of the theorem.
1. We use a variant of the Ahlfors-Schwarz lemma to reduce the case of

variable curvature to that of curvature identically equal to −1. If our given metric
is σ = σ(z)|dz|2, and μ = μ(z)|dz|2 is the Poincaré metric, we use the curvature

∗R. Schoen, S. Wolpert, S. T. Yau, Geometric Bounds on the Low Eigenvalues of a Compact
Surface, Proceedings of Symposia in Pure Mathematics, Volume 36, 1980.

†1980 Mathematics Subject Classification 53-XX.




