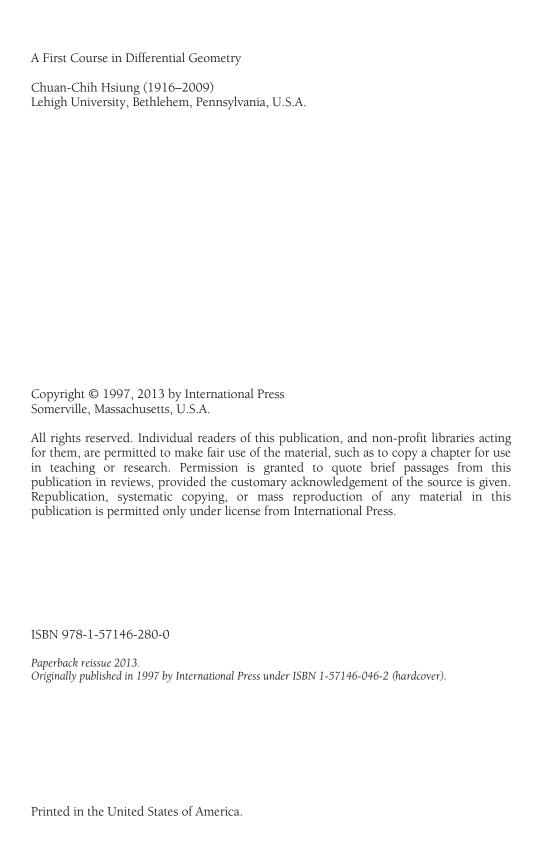
A First Course in Differential Geometry

A First Course in Differential Geometry

Chuan-Chih Hsiung

Lehigh University



Preface

According to a definition stated by Felix Klein in 1872, we can use geometric transformation groups to classify geometry. The study of properties of geometric figures (curves, surfaces, etc.) that are invariant under a given geometric transformation group G is called the geometry belonging to G. For instance, if G is the projective, affine, or Euclidean group, we have the corresponding projective, affine, or Euclidean geometry.

The differential geometry of a geometric figure F belonging to a group G is the study of the invariant properties of F under G in a neighborhood of an element of F. In particular, the differential geometry of a curve is concerned with the invariant properties of the curve in a neighborhood of one of its points. In analytic geometry the tangent of a curve at a point is customarily defined to be the limit of the secant through this point and a neighboring point on the curve, as the second point approaches the first along the curve. This definition illustrates the nature of differential geometry in that it requires a knowledge of the curve only in a neighborhood of the point and involves a limiting process (a property of this kind is said to be local). These features of differential geometry show why it uses the differential calculus so extensively. On the other hand, local properties of geometric figures may be contrasted with global properties, which require knowledge of entire figures.

The origins of differential geometry go back to the early days of the differential calculus, when one of the fundamental problems was the determination of the tangent to a curve. With the development of the calculus, additional geometric applications were obtained. The principal contributors in this early period were Leonhard Euler (1707–1783), Gaspard Monge (1746–1818), Joseph Louis Lagrange (1736–1813), and Augustin Cauchy (1789–1857). A decisive step forward was taken by Karl Friedrich Gauss (1777–1855) with his development of the intrinsic geometry on a surface. This idea of Gauss was generalized to n(>3)-dimensional space by Bernhard Riemann (1826–1866), thus giving rise to the geometry that bears his name.

This book is designed to introduce differential geometry to beginning graduate students as well as advanced undergraduate students (this intro-

VIII PREFACE

duction in the latter case is important for remedying the weakness of geometry in the usual undergraduate curriculum). In the last couple of decades differential geometry, along with other branches of mathematics, has been highly developed. In this book we will study only the traditional topics, namely, curves and surfaces in a three-dimensional Euclidean space E^3 . Unlike most classical books on the subject, however, more attention is paid here to the relationships between local and global properties, as opposed to local properties only. Although we restrict our attention to curves and surfaces in E^3 , most global theorems for curves and surfaces in this book can be extended to either higher dimensional spaces or more general curves and surfaces or both. Moreover, geometric interpretations are given along with analytic expressions. This will enable students to make use of geometric intuition, which is a precious tool for studying geometry and related problems; such a tool is seldom encountered in other branches of mathematics.

We use vector analysis and exterior differential calculus. Except for some tensor conventions to produce simplifications, we do not employ tensor calculus, since there is no benefit in its use for our study in space E^3 . There are four chapters whose contents are, briefly, as follows.

Chapter 1 contains, for the purpose of review and for later use, a collection of fundamental material taken from point-set topology, advanced calculus, and linear algebra. In keeping with this aim, all proofs of theorems are self-contained and all theorems are expressed in a form suitable for direct later application. Probably most students are familiar with this material except for Section 6 on differential forms.

In Chapter 2 we first establish a general local theory of curves in E^3 , then give global theorems separately for plane and space curves, since those for plane curves are not special cases of those for space curves. We also prove one of the fundamental theorems in the local theory, the uniqueness theorem for curves in E^3 . A proof of this existence theorem is given in Appendix 1.

Chapter 3 is devoted to a local theory of surfaces in E^3 . For this theory we only state the fundamental theorem (Theorem 7.3), leaving the proofs of the uniqueness and existence parts of the theorem to, respectively, Chapter 4 (Section 4) and Appendix 2.

Chapter 4 begins with a discussion of orientation of surfaces and surfaces of constant Gaussian curvature, and presents various global theorems for surfaces.

Most sections end with a carefully selected set of exercises, some of which supplement the text of the section; answers are given at the end of the book. To allow the student to work independently of the hints that accompany some of the exercises, each of these is starred and the hint

PREFACE ix

together with the answer appear at the end of the book. Numbers in brackets refer to the items listed in the Bibliography at the end of the book.

Two enumeration systems are used to subdivide sections; in Chapters 1 (except Sections 4 and 7) and 2, triple numbers refer to an item (e.g., a theorem or definition), whereas in Chapters 3 and 4 such an item is referred to by a double number. However, there should be no difficulty in using the book for reference purposes, since the title of the item is always written out (e.g., Corollary 5.1.6 of Chapter 1 or Lemma 1.5 of Chapter 3).

This book can be used for a full-year course if most sections of Chapter 1 are studied thoroughly.

For a one-semester course I suggest the use of the following sections:

Chapter 1: Sections 3.1, 3.2, 3.3, 6.

Chapter 2: Section 1.1 (omit 1.1.4–1.1.6), Section 1.2 (omit 1.2.6, 1.2.7), Section 1.3 (omit 1.3.7–1.3.12), Sections 1.4 and 1.5 (omit 1.5.5); Section 2 (omit 2.3, 2.5, 2.6.4–2.6.6, 2.9–2.11, 2.14–2.23); Section 3 (omit 3.1.8–3.1.14).

Chapter 3: Section 1 (omit the proof of 1.6, 1.7, 1.8, the proof of 1.10, 1.11-1.13, 1.15-1.18); Section 2 (omit the proof of 2.4); Sections 3-9; Section 10 (omit the material after 10.7).

Chapter 4: Section 1 (omit the proofs of 1.3 and 1.4); Section 3 (omit 3.14); Sections 4 and 5.

For a course lasting one quarter I suggest omission of the following material from the one-semester outline above: Chapter 2: the second proof of 2.6, 3.2; Chapter 3: the details of 1.3 and 1.4, the proof of 5.7, Section 6, the proofs of 8.1 and 8.2; Chapter 4: Section 5.

I thank Donald M. Davis, Samuel L. Gulden, Theodore Hailperin, Samir A. Khabbaz, A. Everett Pitcher, and Albert Wilansky for many valuable discussions and suggestions in regard to various improvements of the book; Helen Gasdaska for her patience and expert skill in typing the manuscript; and the staff of John Wiley, in particular Beatrice Shube, for their cooperation and help in publishing this book.

CHUAN-CHIH HSIUNG

Bethlehem, Pennsylvania September, 1980

Contents

GENERAL NOTATION AND DEFINITIONS

CHAPTER 1. EUCLIDEAN SPACES

1. Point Sets, 1

- 1.1. Neighborhoods and Topologies, 1
- 1.2. Open and Closed Sets, and Continuous Mappings, 4
- 1.3. Connectedness, 7
- 1.4. Infimum and Supremum, and Sequences, 9
- 1.5. Compactness, 11

2. Differentiation and Integration, 15

- 2.1. The Mean Value Theorems, 15
- 2.2. Taylor's Formulas, 17
- 2.3. Maxima and Minima, 18
- 2.4. Lagrange Multipliers, 20

3. Vectors, 23

- 3.1. Vector Spaces, 23
- 3.2. Inner Product, 24
- 3.3. Vector Product, 25
- 3.4. Linear Combinations and Linear Independence; Bases and Dimensions of Vector Spaces, 27
- 3.5. Tangent Vectors, 29
- 3.6. Directional Derivatives, 32

4. Mappings, 35

- 4.1. Linear Transformations and Dual Spaces, 35
- 4.2. Derivative Mappings, 40

5. Linear Groups, 46

- 5.1. Linear Transformations, 46
- 5.2. Translations and Affine Transformations, 52

XII CONTENTS

	5.3. 5.4.	Isometries or Rigid Motions, 54 Orientations, 59	
6.	Diffe	erential Forms, 64	
	6.1.	1-Forms, 64	
	6.2.	Exterior Multiplication and Differentiation, 67	
	6.3.	Structural Equations, 73	
7.	The	Calculus of Variations, 75	
CH	APT	ER 2. CURVES	78
1.	Gene	eral Local Theory, 78	
	1.1.	Parametric Representations, 78	
	1.2.	Arc Length, Vector Fields, and Knots, 82	
	1.3.	The Frenet Formulas, 88	
	1.4.	Local Canonical Form and Osculants, 100	
	1.5.	Existence and Uniqueness Theorems, 105	
2.	Plan	e Curves, 109	
	2.1.	Frenet Formulas and the Jordan Curve Theorem, 109	
	2.2.	Winding Number and Rotation Index, 110	
		Envelopes of Curves, 112	
		Convex Curves, 113	
		The Isoperimetric Inequality, 118	
	2.6.	The Four-Vertex Theorem, 123	
	2.7.	The Measure of a Set of Lines, 126	
	2.8.	More on Rotation Index, 130	
3.	Glob	al Theorems for Space Curves, 139	
	3.1.	Total Curvature, 139	
	3.2.	Deformations, 147	
CH	APTI	ER 3. LOCAL THEORY OF SURFACES	151
1.	Para	ametrizations, 151	
2.		ctions and Fundamental Forms, 170	
3.		m of a Surface in a Neighborhood of a Point, 182	
4.		ncipal Curvatures, Asymptotic Curves, and Conjugate	
		ections, 188	
5.	Ma	ppings of Surfaces, 197	

CONTENTS xiii

6. Triply Orthogonal Systems, and the Theorem Liouville, 203	ns of Dupin and
7. Fundamental Equations, 207	
8. Ruled Surfaces and Minimal Surfaces, 214	
9. Levi-Civita Parallelism, 224	
10. Geodesics, 229	
CHAPTER 4. GLOBAL THEORY OF SURFA	CES 241
1. Orientation of Surfaces, 241	
2. Surfaces of Constant Gaussian Curvature, 24	6
3. The Gauss-Bonnet Formula, 252	
4. Exterior Differential Forms and a Uniqueness for Surfaces, 267	s Theorem
5. Rigidity of Convex Surfaces and Minkowski's	s Formulas, 275
6. Some Translation and Symmetry Theorems, 2	280
7. Uniqueness Theorems for Minkowski's and C Problems, 285	hristoffel's
8. Complete Surfaces, 292	
Appendix 1. Proof of Existence Theorem 1.5.1, C	Chapter 2 307
Appendix 2. Proof of the First Part of Theorem 7	7.3, Chapter 3 309
Bibliography	313
Answers and Hints to Exercises	316
Index	335

Index

Abelian group, 24	Bounded set, 9
Accumulation point, 5	Buffon's needle problem, 128, 130
Admissible arc, 301	
Affine group, 53	Cartesian product, 3
Affine transformation, 52	Catenary, 168, 220
isometric, 56	Catenoid, 168, 220
Angle:	as minimal surface of revolution, 220
between curves on surface, 199	Cauchy, convergence condition, 10
between vectors, 25	sequence, 10
exterior, 252	Cauchy-Crofton formula, 128
interior, 252	Cauchy-Riemann equations, 202
of geodesic triangle, 264	Cauchy's formula, 115
Antipodal, point, 303	Center of curvature, 95, 103, 104, 185
mapping, 246	Chain rule, 20
Arc length, 83, 84, 88	Christoffel's problem, 286
of curve on surface, 176	uniqueness theorem for, 289
reparametrization of curve by, 84	Christoffel symbols, 210
Area, element of, 271	Circular helix, 95, 104 (Ex. 4)
Associated Bertrand curves, 93	Closed form, 71
Asymptotic curve, 192-193	Closed plane curve, 85, 86
of developable surface, 208	diameter of 113, 123
Asymptotic direction, 184	exterior of, 110
Axiom of completeness, 9	interior of, 110
Axis:	Closed set, 4
of helix, 79	Closure of set, 5
of revolution, 158	Cluster point, 5
0110.0141011, 100	Cohn-Vossen's theorem, 275
Basis, natural, 28	Compact space, 11
orthonormal, 28	Complement of set, 5, 38
of a space, 28	Completely integrable system, 212
Beltrami-Enneper theorem, 197	Complete surface, 249, 294, 298, 299,
Bertrand curve, 92-96, 97, 98	305
Binormal, 91	Component:
vector, 92	of set, 8
Bolzano, intermediate value theorem of,	of vector, 23
14	Cone, 161
Bonnet's theorems, 212, 272, 305, 309	local isometry of, to plane, 198
Boundary of set, 3	as ruled surface, 215
Boundary point of set, 3	Confocal quadrics, 204, 206

Conformal mapping, 198	radius of, 91, 116
Liouville's theorem for, 206	Curve:
local, 199	asymptotic, see Asymptotic curve
of planes, 202	Bertrand, see Bertrand curve
of Poincaré half-plane to Euclidean	of class Ck, 85
plane, 251	closed, 85, 86
of spheres to planes, 200, 201	of constant width, 113, 114, 138
of surfaces, 200	continuous, 85
Conjugate directions, 194	convex, 113, 134, 135, 137
net, 194, 197	curvature of, 90, 91, 96
Conjugate point, 302-305	Mannheim, 98
Connected space, 7	oriented, 89
Conoid, 202	periodic, 86
Contact of order k with curve, 101	piecewise (sectionally) regular (smooth),
Continuous mapping, 6	82, 86, 133
Convergence of sequence, 10	plane, 92, 93, 136
Convex hull, 137, 289	rectifiable, 83
Convex set, 137	regular, 82
Convex surface, 275	reparametrization of, 80-81, 83
of constant Gaussian curvature, 280	by arc length, 84
of constant mean curvature, 285	simple, 85
in direction, 284	smooth, 82, 86
Coordinate, neighborhood, 151	spherical, 104
Coordinate functions:	on surface, 171-172
of curve on surface, 172	torsion of, 91, 92, 96
of vector field on E ³ , 32	vertex of, 123, 138, 139
Coordinate system, 151	Cusp, 79
isothermal, 200, 222	Cycloid, 87
spherical, 204	Cylinder, 4, 157, 244
Covariant differential, 225	first fundamental form of, 179
Covering, 11	geodesics of, 239
open, 11	local isometry of, to plane, 198
finite, 11	parametrization of, 158
sub-, 11	as ruled surface, 215
Critical point, 19, 180	Cylindrical helix, 97, 107
Crofton's theorem, 143	
Cubic parabola, 104	Darboux frame, 176
Curvature:	Decomposition of space, 38
center of, see Center of curvature	Deformation of curve, 147
of curve, 90, 91, 96	Derivative mapping, 41
Gaussian, 189, 196, 211, 270	Determinant of three vectors, 25
intrinsic property of, 211, 272	Developable surface, 208
of torus, 194	Diameter:
geodesic, 299	of closed plane curve, 113, 123
lines of, 192, 204, 206	of set, 9
differential equation of, 189	Diffeomorphism, 43
mean, 189, 196, 270	area-preserving, 202
normal, 177, 183, 184	orientation-preserving or exterior-
principal, 184, 189	reversing, 245

Differential:	for system of partial differential
form, see Form, differential	equations of first order, 309
of function, 64	Existence theorem for curves, 105,
mapping, 41	307
Dimension of space, 28	Exterior, of closed plane curve,
Direction:	110
asymptotic, 184	Exterior angle, 252
principal, 184, 189	derivative, 69
Directional derivative, 33, 173	Exterior differential form, 64, 267
Direct sum of spaces, 38	Exterior multiplication, 67
Disconnected space, 7	Exterior point, 3
Distance:	Exterior product, 69
in E ³ , 2, 24	Extremal curve of integral, 76
on surface, 293-294	Extremum, 18
Divergence of sequence, 10	absolute, 20
Dual basis, 40, 65	relative (local), 18, 20
Dual space, 39	Extrinsic property, 227
Dupin:	• •
indicatrix, 184	Fary-Milnor theorem, 145
theorem, 204	Fenchel's theorem, 140
	Field:
Element:	frame, 31
of arc, 176	Frenet frame, 90
of area, 218, 271	vector, see Vector field
Ellipsoid, 157, 186, 244	Finite covering, 11
Empty set, 4	First fundamental form, 175,
Enneper's minimal surface, 223	176
Envelope:	coefficients of,177
of family of curves, 112	First variation:
of family of tangent planes, 227	of integral, 75
Equator, 154	of length, 300
Equivalent knots, 86	Folium of Descartes, 82
Erdmann's theorem, 76	Form:
Euclidean coordinate functions:	closed, 71
of form, 65	on E ³ , 64
of mapping, 35	exact, 71
of vector field, 30, 85	exterior differential, 64, 267
Euclidean group of rigid motions,	fundamental, 175-178, 269
56	structural equations for, 75, 269
Euclidean space, 1	on surface, 173, 174
Euler angles, 50	Four-vertex theorem, 123
Euler characteristic, 255, 256	Frame, 31
Euler equation, 76	Darboux, 176
Euler's formula, 184	moving, 88
Evolute, 98	positively or negatively oriented, 60,
Exact form, 71	85
Existence and uniqueness theorem:	right-or left-handed oriented, 60,
for system of ordinary differential	85 Franct formulas 00, 100
equations of first order, 307	Frenet formulas, 90, 109

Frenet frame field, 90	in small, 233, 304
Function:	of sphere, 239
of class Ck, 170	Geodesic torsion, 237-238
continuous, 6	of asymptotic curves, 240
harmonic, 222	Geodesic triangle, 264
height, 145	excess of, 264
Laplacian of, 222	Gradient:
periodic, 19	oņ E ³ , 72
regular value of, 155, 244	on surface, 181
Fundamental forms, 175-178, 269	Graph, 13
relation among, 208	of C ³ function, 155, 160
Fundamental theorem:	area of, 218
for curves, 105	Gaussian curvature of, 196
for surfaces, 212, 272, 309	mean curvature of, 196
	principal curvature of, 196
Gauss:	tangent plane of, 180
equations, 210, 211	Greatest lower bound, 9
mapping, 176	Green's formula, 258, 268
trihedron, 176	Group, 47
Gauss-Bonnet formula:	Abelian, 24
global, 257	affine, 53
local, 256	general linear, 47
Gauss-Bonnet theorem, 256	of isometrics, 56
applications of, 261-264	orthogonal, 48
Gaussian curvature, see Curvature, Gaussian	
Generalized uniqueness theorem for	Hausdorff space, 11
curves, 105	Height function, 145
General linear group, 47	Heine-Borel theorem, 11, 132
Genus of surface, 256	Helicoid, 181
Geodesic circles, 236	as ruled minimal surface, 223
Geodesic curvature, 229-231, 239	Helix, 79, 87, 96
Geodesic disk, 293	axis of, 79
Geodesic parallels, 232	circular, 95, 104
Geodesic polar coordinates, 234	cylindrical, 97, 107
area of geodesic circle in, 237	pitch of, 79
first fundamental form in, 233	Hilbert's theorem, 249
Gaussian curvature in, 236	Homeomorphic spaces, 6
perimeter of geodesic circle in, 236	Homeomorphism, 6
Geodesics, 229	Homotopy of curves, 169
characterizations of, 231	Hopf-Rinow's theorem, 295
of circular cylinder, 239	Hopf-Voss symmetry theorem, 284
closed, 261, 262	Hopf-Voss translation theorem,
differential equations of, 231	280
existence and uniqueness of, 231	Hyperbolic paraboloid, 169, 223
field of, 232	Hyperboloid:
of plane, 239	of one sheet, 223
of Poincaré half-plane, 251	of two sheets, 157, 244
as shortest arcs:	** **
in large, 298, 299	Identity, Lagrange, 26

Index:	Kronecker delta, 31
rotation, 111, 131, 134, 135, 136	
of vector field, 264-267	Lagrange identity, 26
Indicatrix:	Lagrange multiplier, 21
binormal, 97	Least upper bound, 9
principal normal, 262, 263	Left-handed oriented frame field, 60
tangent, 97, 140	85
Inequality, isoperimetric, 118	Length:
Infimum, 9	of curve, see Arc length
Inner product, 24, 31	of vector, 24
Integrability condition, 212, 269	Levi-Civita parallelism, 225
Interior:	property of, 227
of closed plane curve, 110	Liebmann's theorem, 247
of set, 3	Limit point, 5
Interior point, 3	Linear combination, 27
Intermediate value theorem of Bolzano,	Linear dependence, 28
14	Linear independence, 27
Intrinsic property, 226	Linear space, 24
Inverse function theorem, 44	Linear transformation, 36, 47
Inversion, 203	kernel of, 36
Involute, 98, 138	nonsingular, 47
Isometric affine transformation, 56	nullity of, 38
Isometry:	rank of, 38
of E ³ , 54	Liouville's theorem, 206
local, 198, 246	Local canonical form of curve, 100
orientation-preserving, 61, 105, 127	Lower bound, 9
orientation-reversing, 61	
of surfaces, 197	Maclaurin's formula, 18, 100
Isoperimetric inequality, 118	Mainardi-Codazzi equations, 212
Isothermal coordinate system, 200,	Mannheim curve, 98
222	Mapping:
	antipodal, 246
Jacobian matrix, 42	area-preserving, 202
Jacobi equation, 302	of class Ck, 35
Jacobi theorem, 263	conformal, 198
Joachimstahl's theorem, 196	continuous, 6
Jordan curve theorem, 110	derivative, 41
	differential, 41
Kernel, 36	Gauss, 176
Knot, 86	position, 111
cloverleaf, 86	principal normal, 262
figure-eight, 86	regular, 43
four, 86	tangential, 111
Listing's, 86	Matrix:
overhand, 86	Jacobian, 42
polygonal, 87	orthogonal, 48
tame, 87	Maximum:
trivial, 86	absolute, 13, 20
wild, 87	relative (local), 18, 20

Mean curvature, 189, 196, 270	Normal curvature, 177, 183, 184
vector, 222	Normal line to curve, 91
Mean value theorem:	Normal plane to curve, 91
of differential calculus, 15	Normal principal, 91
of integral calculus:	Normal section, 177, 185
first, 15	Normal vector field, 243, 245
generalized first, 16	Normal vector to surface, 174, 180
second, 16	Norm of vector, 24
Measure of set of lines, 126	Nullity, 38
Mercator projection, 201	
stereographic, 169, 200	Open covering, 11
Meridian:	Open set, 4
of sphere, 154	Opposite points, 137
of surface of revolution, 158	Orientable surface, 242-243
Meusnier's theorem, 177	Orientation:
Minding's theorem, 246	of frame, 59
Minimal surface, 217	of surface, 241-245
Enneper's, 223	Orientation-preserving (-reversing)
with isothermal parameters, 223	isometry, 61, 105, 127
of revolution, 220	Oriented curve, 89. See also Positively
ruled, 223	oriented
Scherk's, 223	Orthogonal group, 48
as solution to variational problem,	Orthogonal matrix, 48
217	Orthogonal system of surfaces, 203
Minimum:	Orthogonal trajectory, 99
absolute, 13, 20	Orthogonal transformation, 48
relative (local), 18, 20	Orthonormal basis, 28
Minkowski's formulas, 277, 279	Osculant of curve, 101
Minkowski's problem, 285	Osculating circle, 103
uniqueness theorem for, 286	Osculating plane, 91, 101-102, 104
Möbius band, 163	Osculating sphere, 103
nonorientability of, 244	Overdetermined system, 225
parametrization of, 164	
Monge parametrization, 155	Paraboloid, 294, 306
Motion:	Parallel curves, 99, 116
improper, 61	Steiner's formulas for, 116
proper, 61	Parallelism, Levi-Civita, 225
rigid, 54	Parallels:
Multiplication, exterior, 67	of colatitude, 154
Multiplication wedge, 67	geodesic, 232
	Parallel translate, 226
Natural basis, 28	existence and uniqueness of, 226
Natural coordinate functions, 2	geometric interpretation of, 227
Natural frame field on E ³ , 30	Parallel vector field along a curve, 225
Negatively oriented frame, 60, 85	differential equations for, 226
Neighborhood, 2	path-independence of, 228
open spherical, 2	Parameter of curve, 78
Normal coordinates, 234	Parameters:
first fundamental form in, 236	change of, for surfaces, 165

isothermal, 200	stereographic, 169, 200		
Parametric representation of plane curve,	<u> </u>		
115			
Parametrization of surface, 151 isothermal, 200, 222	Quadratic form, 21		
Parseval's formulas, 122	Radius:		
Period, 19, 86, 88	of curvature, 91		
Periodic function, 19	of torsion, 91		
Piecewise regular (smooth) curve, 82	Rank of linear transformation, 38		
Plane:	Rectifiable curve, 83		
first fundamental form of, 178	Rectifying plane, 91		
normal, 91	Reflection, 49, 61		
osculating, see Osculating plane	Region:		
rectifying, 91	regular, 253		
tangent, 173, 180	simple, 254, 260		
Plateau's problem, 217	Regular curve, 82		
Poincaré half-plane, 226, 250-251	Regular mapping, 43		
Poincaré theorems, 70, 265	Regular value of function,		
Point:	155, 244		
accumulation, 5	Relative topology, 3		
antipodal, 303	Reparametrization of curve, 80-81,		
of application, 29	83		
conjugate, 302-305	by arc length, 84		
critical, 19, 180	orientation-preserving (-reversing),		
elliptic, 182, 185, 186	84		
hyperbolic, 182, 185, 186	Riemann symbols, 213, 214		
limit, 5	Right-handed oriented frame, 60,		
parabolic, 182, 185, 186	85		
planar, 183, 186	Rigid affine transformation, 56		
saddle, 19	Rigidity of sphere, 249		
umbilical, 184, 186, 190	Rigid motion, 54		
Polar tangential coordinates, 115	Rodriques, equation of, 192		
Position:	Rotation, of E^2 , 49, 61		
mapping, 111	Rotation index, 111, 131, 134, 135,		
vector, 24	136		
Positively oriented:	Ruled surface, 214		
boundary of simple region, 254	directrix of, 214		
frame, 60, 85	ruling of, 214		
simple closed curve, 110	0.11		
tangent, 110	Saddle point, 19		
Principal:	Saddle surface, 223		
curvature, 184, 189	Scalar product, 24		
direction, 184, 189	Schur's theorem for curves, 147		
normal, 91	Screw surface, 203		
Product:	Second fundamental form, 175, 177,		
inner, 24, 31	269		
scalar, 24 vector, 25	coefficients of, 178		
Projection, Mercator, 201	Second variation of length, 302 Section, normal, 177, 185		
rojection, mercator, 201	Section, normal, 177, 105		

Sectionally regular (smooth) curve, 82	parametrization of, 151			
Sequence:	by lines of curvature, 192			
Cauchy, 10	parametrized, 167			
convergent, 10	of revolution, 158, 244			
divergent, 10	axis of, 158			
Set:	of constant Gaussian curvature, 251			
bounded, 9	meridian of, 158			
closed, 4	minimal, 220			
empty, 4	parallels of, 158			
open, 4	parametrization of, 159			
Sign of isometry, 60	ruled, see Ruled surface			
Simple curve, 85	saddle, 223			
Simple region, 254, 260	screw, 203			
Simple surface, 155	simple, 155			
Singular point of curve, 82	star-shaped, 279			
Space:	of constant Gaussian curvature, 280			
compact, 11	of constant mean curvature, 280			
connected, 7	Weingarten, 252			
disconnected, 7	special, 252			
Hausdorff, 11	Symbols:			
linear, 24	Christoffel, 210			
Spaces, homeomorphic, 6	Riemann, 213, 214			
Sphere:				
first fundamental form of, 179	Tangent:			
meridian of, 154	indicatrix, 97, 140			
parametrizations of, 152-155, 169	line of curve, 82			
Stationary integral, 75	plane, 173, 180			
Steiner's formulas for parallel curves,	space, 30			
116	surface, 216			
Stereographic projection, 169, 200	local isometry of, to plane, 216			
Straight line, 78, 92	vector:			
length-minimizing property of, 87	to curve, 80			
Structural equations for forms, 75,	to E ³ , 29			
269	to surface, 173			
Subcovering, 11	Tangential mapping, 111, 140			
Subspace, 3	Tangents, theorem on turning, 131			
Supremum, 9	Taylor's formulas, 17			
Surface:	Third fundamental form, 175, 176			
complete, see Complete surface	Topological product, 4			
of constant Gaussian curvature, 246-252	Topological space, 3			
Hilbert's theorem for, 249	Topology, 3			
Liebmann's theorem for, 247	relative, 3			
Minding's theorem for, 246	Torsion:			
convex, see Convex surface	of curve, 91, 92, 96			
developable, 208	geodesic, 237-238			
equation of, 183	of asymptotic curves, 240			
genus of, 256	radius of, 91			
minimal, see Minimal surface	total, 146			
Monge parametrization of, 155	Torus, 4, 161			

Gaussian curvature of, 194	Variations:		
parametrization of, 162, 181	calculus of, 75		
Total curvature of curve, 139	normal, of surfaces, 218		
Fary-Milnor theorem on, 145	Vector, 23		
Fenchel's theorem on, 140	curl of, 73		
Total twist number of curve, 100	divergence of, 73		
Tractrix, 195	mean curvature, 222		
Transformation:	product, 25		
affine, 52	space, 24		
isometric, 56	tangent, to curve, 80		
linear, see Linear transformation	unit, 24		
orthogonal, 48	velocity, 80		
Translation, 52, 61	Vector field, normal:		
Trefoil, 86	on curve, 85		
Triangle, geodesic, 264	on E ³ , 30		
Triangle inequality, 2	on surface, 264		
Triangulation, 254-255	index of, 264-267		
Trihedron:	normal, 243, 245		
Gauss, 176	singular point of, 264		
right-handed rectangular, 1	tangent, 173		
Triply orthogonal system, 203-205	Vertex, of plane curve, see Curve,		
Dupin's theorem for, 204	vertex of		
	Vertices of piecewise regular curve,		
Umbilical point, 184, 186, 190	82		
Unimodular affine group, 54			
Uniqueness theorem for curves, 105	Wedge multiplication, 67		
Unit vector, 24	Weingarten formulas, 207		
Upper bound, 9	Weingarten surface, special, 252		
	Weyl's problem, 285		
Variation:	uniqueness theorem for, 275, 286		
first:	Width of closed curve:		
of area, 219	constant, 113, 114, 138		
of length, 300	in direction, 113		
second, of length, 302	Winding number, 111, 136		
of vector field, 257	Wirtinger's lemma, 121		