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Chapter 1

Introduction

Abstract. We study a generalization of Serre-Tate theory of or-
dinary abelian varieties and their deformation spaces. This gen-
eralization deals with abelian varieties equipped with additional
structures. The additional structures can be not only an action of
a semisimple algebra and a polarization, but more generally the
data given by some “crystalline Hodge cycles” (a p-adic version
of a Hodge cycle in the sense of motives). Compared to Serre-Tate
ordinary theory, new phenomena appear in the generalized context.

We give an application of the generalized theory to the existence
of “good” integral models of those Shimura varieties whose adjoints
are products of simple, adjoint Shimura varieties of DlH type with
>4,

In this monograph we develop a theory of ordinary abelian varieties and
p-divisible groups with additional structures. We use it to give applications
to the existence of “good” integral models of those Shimura varieties whose
adjoints are products of simple, adjoint Shimura varieties of DZH type with
[ >4.

The additional structures can be defined by an action of a semisimple
algebra, by a polarization, or more generally by some “p-adic Hodge cycles”.

In this introduction we first begin by recalling the classical Serre-Tate
ordinary theory of abelian varieties and their deformation spaces. In our
theory this will correspond to the case of a general linear group, the more
general case corresponding to a “p-adic Mumford-Tate group” (i.e., a p-
adic reductive group scheme whose generic fibre fixes the Hodge tensors
that define the additional structures). After having recalled the classical
Serre-Tate ordinary theory, we will give the translation of part of it into
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our language. Then we will explain the more general objects we consider and
we will state our main results. We will end the introduction by mentioning
applications and our main motivations.

For reader’s convenience, here is a list of standard notions and notations
that pertain to (group) schemes. The reader ought to look into it only when
needed.

Standard language and notations on (group) schemes. We recall that a
group scheme H over an affine scheme Spec R is called reductive, if it is
smooth and affine and its fibres are connected and have trivial unipotent
radicals (cf. [DG, Vol. III, Exp. XIX, Def. 2.7]). It is known that H is of
finite presentation over Spec R, cf. [DG, Vol. III, Exp. XIX, Sect. 2.1 or Rm.
2.9]. If Spec R is connected, then H is a semisimple group scheme (resp. is
a torus) if and only if one fibre of H is a semisimple group (resp. is a torus)
(cf. [DG, Vol. III, Exp. XIX, Cor. 2.6]). Let H", Z(H), H*®, and H* be
the derived group scheme of H, the center of H, the maximal commutative
quotient of H, and the adjoint group scheme of H (respectively). Thus we
have H* = H/Z(H) and H*® = H/H" cf. [DG, Vol. III, Exp. XXII,
Def. 4.3.6 and Thm. 6.2.1]. Moreover H der and H2d are semisimple group
schemes, HP is a torus, and (cf. [DG, Vol. I1I, Exp. XXII, Cor. 4.1.7]) Z(H)
is a group scheme of multiplicative type. Let Z°(H) be the maximal torus of
Z(H); the quotient group scheme Z(H)/Z"(H) is finite and of multiplicative
type.

Let F' be a closed subgroup scheme of H; if R is not a field, then
we assume F' is smooth. Let Lie(F) be the Lie algebra over R of F. As
R-modules, we identify Lie(F) with Ker(F(R[x]/x?) — F(R)), where the
R-epimorphism R[z]/(2?) — R takes z to 0. The Lie bracket on Lie(F)
is obtained by taking the total differential of the commutator morphism
F Xgpecr F' — F at identity sections. Often we say F' and H are over R
and we write F' xg F' instead of F' Xgpec r £7. For a finite, flat, morphism
Spec R — Spec Ry of affine schemes, let Resg/ g, F' be the group scheme over
Spec Ry obtained from F' through the Weil restriction of scalars (see [BLR,
Ch. 7, Sect. 7.6] and [Vab, Subsect. 2.3]).

By a parabolic subgroup scheme of H we mean a smooth, closed sub-
group scheme Py of H whose fibres are parabolic subgroup schemes over
spectra of fields. The unipotent radical U of Py is the maximal unipotent,
smooth, normal, closed subgroup scheme of Pp; it has connected fibres. The
quotient group scheme Pp/Up exists and is reductive, cf. [DG, Vol. III,
Exp. XXVI, Prop. 1.6]. We identify Uy with the closed subgroup scheme
of H? which is the unipotent radical of the parabolic subgroup scheme
Im(Py — H*) of H*\. By a Levi subgroup scheme Ly of Py we mean a
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reductive, closed subgroup scheme of Py such that the natural homomor-
phism Ly — Py /Ug is an isomorphism.

For a free R-module M of finite rank, let GL,; be the reductive group
scheme over Spec R of linear automorphisms of M. Thus for a commutative
R-algebra Ry, GLj;(R;) is the group of Rj-linear automorphisms of M ®p
R;. If Lie(F') is a free R-module of finite rank, then in expressions of the form
GLyie(r) we view Lie(F) only as a free R-module; thus we view Lie(F) as an
F-module via the adjoint representation F' — GLye(r)- If f1, f2 € Endz(M),
let fifo:=fiofo€ Endz(M). Let MY := HomR(M, R)

A bilinear form ¥y : M x M — R on M is called perfect if it induces
naturally an R-linear isomorphism MMV If 1y is perfect and alternat-
ing, let GSp(M,1pr) and Sp(M,ps) be the reductive group schemes over
R of symplectic similitude isomorphisms and of symplectic isomorphisms
(respectively) of (M, ).

Let K be an algebraic closure of a field K. If T — S is a morphism
of schemes and X (resp. Xg or X; with i as an index) is an S-scheme, let
X1 :=XxgT (resp. X7 or X; 1) be the T-scheme which is the pull-back of
X (resp. of Xgor X;). If T = Spec R — S = Spec Ry is a morphism of affine
schemes, we often denote X7 and X; 7 by Xp and X; p (respectively). The
same type of notations apply for morphisms of schemes and for (morphisms
of) p-divisible groups. If R is a complete, local ring, we identify the categories
of p-divisible groups over Spf R and Spec R (cf. [Me, Ch. II, Lem. 4.16]).

1.1. Classical Serre-Tate ordinary theory

Let p € N be a prime. Let k& be a perfect field of characteristic p. Let
W (k) be the ring of Witt vectors with coefficients in k. Let B(k) := W(k)[l%]
be the field of fractions of W (k). Let o := o, be the Frobenius automorphism
of k, W(k), and B(k). Let r, d € NU {0} with » > d. In late sixties Serre
and Tate developed an ordinary theory for p-divisible groups and abelian
varieties over k. It can be summarized as follows.

Ordinary p-divisible groups. A p-divisible group D over k of height r and
dimension d is called ordinary if and only if one of the following five
equivalent conditions holds for it:

(a) it is a direct sum of an étale p-divisible group and of a p-divisible
group of multiplicative type;

(b) its Newton polygon is below the Newton polygon of every other
p-divisible group over k of height r and dimension d;

(c) its Hasse-Witt invariant is equal to r — d;
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(d) there exist isomorphisms between D[plz and pd & (Z/pZ)"~;

(e) there exist isomorphisms between Dy and p,goo ® (Qp/Zy) .

Canonical lifts. If D is ordinary, then there exists a unique p-divisible group
Dyy () over W (k) which lifts D and which is a direct sum as in (a). It is
called the canonical lift of D. Via reduction modulo p we have an identity
End(Dy 1)) = End(D) of Z,-algebras.

Abelian varieties. An abelian variety A over k is called ordinary if its p-
divisible group is so. Ordinary abelian varieties are of particular importance
as in the reduction modulo p of the moduli spaces of principally polarized
abelian varieties, they form open dense subspaces. If A is ordinary, then
there exists a unique abelian scheme Ay () over W (k) which lifts A and
whose p-divisible group is a direct sum as in (a); it is called the canonical
lift of A. If k is an algebraic closure F of the field F), with p elements, then
a theorem of Tate asserts that Ay (y) has complex multiplication. If k is
finite, then Ay () is the unique lift of A to W (k) to which the Frobenius
endomorphism of A lifts.

Deformation theory. Let D,y be the universal p-divisible group over the
deformation space D(D) of D (see [Il, Thm. 4.8]; based on [Me, Ch. II, Lem.
4.16], we view D(D) as a scheme). If D is ordinary, then the main properties

of Duniv are the following four:

(f) we have a short exact sequence 0 — D&)iv — Dyniv — Dl(lgl)iv — 0
of p-divisible groups over D(D), where D&l)iv
DO

(g) if k = k, if V is a finite, discrete valuation ring extension of W (k), if

K = V[%], if Dy is a p-divisible group over V that lifts D, if TI;/(DK)
is the dual of the Tate module T,(Dg) of D, then the p-adic Galois
representation Gal(K/K) — GL7y (py)(Zp) factors through the group of

Z,-valued points of a connected, smooth, solvable, closed subgroup scheme

is of multiplicative type and

is étale;

of GLTPV (D)’

(h) if k = k, then the formal scheme defined by D(D) has a canonical
structure of a formal torus over Spf W (k), the identity section corresponding
to the canonical lift of D;

(i) if k = k, then there exist isomorphisms D(D)=Spec W (k)[[x1,. ..,
xd(r,d)]] that define canonical coordinates for D(D) which are unique up to

a suitable action of the group GLg(_g)(Zp) of automorphisms of the d(r —d)
dimensional formal torus over Spf W (k).

The above results on D, Dy (), and Ay ) were published as an
appendix to [Me]. The equivalence (a) < (b) is also a particular case of a
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theorem of Mazur (see [Ka2, Thm. 1.4.1]). All the above results on D(D) are
contained in [Kal,3,4], and [Ded]. A variant for principally quasi-polarized
p-divisible groups can be deduced easily from the above results and thus it
is also part of the classical Serre-Tate ordinary theory. If k = k, then the
formal torus structure of (h) is obtained naturally once one remarks that:

(h.a) the short exact sequence of (f) is the wuniversal extension of
D(O) ;(Qp/zp)r—d by D(l)

iy univép,goo (here the two isomorphisms are over
D(D));
(h.b) the short exact sequence 0 — Z~% — Q)% — (Qp/Z,)" % — 0
induces a (push forward) coboundary homomorphism Hom(Z;;_d,pgoo) —
Ext'((Qp/Zy) ™, plc) which is an isomorphism between two formal tori

over Spf W (k) of dimension d(r — d).

We recall that a formal Lie group F over Spf W (k) is a contravariant
functor from the category of local, artinian W (k)-schemes of residue field
k into the category of groups which, when viewed as a functor into the
category of sets, is representable by Spf R, where R = W (k)[[z1,. .., Zm]]

for some number m € N U {0} called the dimension of F and for some
independent variables x1, ..., Z,, (see [Me, Ch. 2, Subsect. 1.1.5] and [Fol]).

1.2. Translation of the classical theory into our language

In Subsection 1.2.1 we recall a few classical results. In Subsections
1.2.2 to 1.2.7 we include intrinsic crystalline interpretations of some parts
of Section 1.1. Several interpretations are new and they are meant: (i) to
motivate the abstract notions to be introduced in Section 1.3, and (ii) to
detail some of the new ideas we will use in this monograph.

Let D be a p-divisible group over k£ of height r and dimension d. Let
(M, ¢) be the (contravariant) Dieudonné module of D. We recall that M is
a free W (k)-module of rank r and ¢ : M — M is a o-linear endomorphism
such that we have pM C ¢(M) and dimg(M/o(M)) =d. Let 9 : M — M
be the o~ !-linear endomorphism that is the Verschiebung map of (M, ¢);
we have identities 9o = @ = ply. Let M := M/pM. Let 3 : M — M
and ¥ : M — M be the reductions modulo p of ¢ and ¥ (respectively).
The k-vector space Ker(@) = Im(?) has dimension d. We recall that the
classical Dieudonné theory says that the category of p-divisible groups over
k is antiequivalent to the category of (contravariant) Dieudonné modules

over k (see [Fol, Ch. III, Prop. 6.1 iii)], etc.).

1.2.1. Lifts. Each lift of D to a p-divisible group Dyy i) over W (k) defines
naturally a direct summand F! of M which modulo p is Ker(®) (see [Me],
[BBM], etc.); the direct summand F'! is called the Hodge filtration of Dyy 1y
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We have ¢~ 1(M) = M + %Fl. We refer to the triple (M, F'', ¢) as a filtered
Dieudonné module over k and to F' as a lift of (M, ). It is well known
that:

(a) if p > 3 or if p = 2 and either D or its Cartier dual D" is connected,
then the correspondence Dyy ) < F' l'is a bijection.

The case p > 3 is a consequence of the Grothendieck—Messing defor-
mation theory (see [Me]). The general case is (for instance) a consequence
of [Fol, Ch. IV, Prop. 1.6]. In loc. cit. it is proved more generally that the
following two properties hold:

(b) if p > 3, then the category of p-divisible groups over W (k) is
antiequivalent to the category of filtered Dieudonné modules over k;

(c) if p = 2, then the category of p-divisible groups over W (k) that are
connected (resp. that have connected Cartier duals) is antiequivalent to the
category of filtered Dieudonné modules over k that do not have Newton
polygon slope 0 (resp. do not have Newton polygon slope 1).

We emphasize that strictly speaking, [Fol, Ch. IV, Prop. 1.6] is stated in
terms of Honda triples (M, @(%Fl), ¢) and not in terms of filtered Dieudonné
modules (M, F!, ). The classical Hasse-Witt invariant HW (D) of D (or
of (M, p)) can be defined as

HW (D) = dimy (Nmen®@™ (M)).

It is the multiplicity of the Newton polygon slope 0 of (M, ¢).

1.2.2. End objects of Dieudonné modules. One can easily translate the
theory of ordinary p-divisible groups over k recalled in Section 1.1, in terms
of the Dieudonné module (M, ). We want to make such a translation
intrinsic, expressed only in terms of the algebraic group GLj; (or rather
of its Lie algebra associated naturally to Endyy(;)(M)) and not in terms
of the GLjs-module M. Later on in our theory, we will replace GL;; by a
reductive, closed subgroup scheme of it. Next we will have a look back at
Section 1.1 from such an intrinsic point of view.

The canonical identification EndB(k,)(M[%]) = M[%] ®B(k) MV[%] allows
us to view EndB(k)(M[%]) as the B(k)-vector space of an F-isocrystal over
k. More precisely, we will denote also by ¢ the o-linear automorphism of
EndB(k)(M[%]) that takes an element x € EndB(k)(M[%]) to pozop e
Endpy(M[3]). Let ¥ : Endyy (M) — Endy (M) be the o-linear
endomorphism defined by the rule: for = € Endyy ;) (M) we have

U(z) == p(p(z)) =ppozop ' =pozod € Endy (M)
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The pair (Endyy (M), ¥) is the tensor product of the Dieudonné modules
of D and Dt.
Let ¥ : Endg(M) — Endg(M) be the reduction modulo p of ¥. The
integer
I(D) := dimy(Npen® " (Endg(M)))

computes the multiplicity of the Newton polygon slope 0 of ¥ and thus also
the multiplicity of the Newton polygon slope —1 of (EndB(k)(M[%]),gp).
Based on this and the last sentence of the previous paragraph, we get the
identity

I(D) = HW(D)HW (D").

In particular, if D has a quasi-polarization (i.e., if D is isogenous to D' and
therefore we have r = 2d), then we have HW (D) = /I(D). Moreover, we
easily get that

D is ordinary <= I(D) = d(r — d).

1.2.3. Characterization of p-torsion subgroup schemes in terms of
(Endy, (M), ). For g € GLy (W (k)), let g* be its image in GL3%(k).
Let D; be the p-divisible group over k£ whose Dieudonné module is (M, gy).
If k = k, then the o-linear endomorphism ¥ “encompasses” both maps ¢,
¥ : M — M. We exemplify this property modulo p.

Claim. If k = k, then there exists an isomorphism D[p]=D1[p] if and only
if there exists an element h € GL3$(k) such that as o-linear endomorphisms
of Endy, (M) we have an identity h¥ = g*Uh (here we need k =k as ¥ can
not “differentiate” between ¢ and its Gy, (W (k))-multiples).

We check here the “if” part of the Claim. Let h € GLj/ (W (k)) be an
element such that we have 7" = k. As we have AU = 320, the reduction
modulo p of h normalizes Ker(¥) = {Z € End(M)|z(Im(9)) C Ker()} and
therefore it normalizes Ker(@) = Im(¥J). This implies that (M, hoh™1!) is a
Dieudonné module. Thus by replacing ¢ with hoh™!, we can assume that
h € GL3}(k) is the identity element; therefore ¥ = g24W. We define M, :=
@(%Fl)/go(Fl) and My := Im(p). We have a direct sum decomposition
M = M @ My of k-vector spaces, cf. the identity =1 (M) = M + %Fl. As
¥ = 3*4W, the element g* fixes Im(¥). But Im(¥) is the direct summand
Homy, (M, My) of

Endk (M) = Endk (E) D Endk (ﬁo) D Homk (E, ﬁo) D Homk (ﬁo, E)

and thus the centralizer of Im(¥) in Endy (M) is Im(¥) & klg;. Therefore
there exists an element x € Endyy ) (M) such that 724 is the image in
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GL34(k) of the element 17 + ¥(z) € GLy (W (k)). Let g1 := 1y + pz €
GLy (W(k)). By replacing gy with

919991 = 199097 0 e = qrg(1y + U (2)) Lo,

g gets replaced by the element g1g(1y + ¥(x))~' whose image in GL3% (k)
is the identity element. Therefore we can assume that g*4 € GL3%(k) is
the identity element. Thus, as D[p] depends only on g modulo p, we can
assume that g € Z(GLys)(W(k)). In this last case, as k = k there exists
an isomorphism (M, gp)—=(M, ¢) defined by an element of Z(GLys)(W (k))
and therefore in fact we have D= D;.

1.2.4. New p-divisible groups via Lie algebras. Until Section 1.3 we will
work over an arbitrary perfect field & of characteristic p and we take D to
be ordinary and Dyy (1 to be its canonical lift. We have o(F') = pF!. Let F°
be the direct supplement of F'* in M such that we have p(F°) = FY. Let P+
and P~ be the maximal parabolic subgroup schemes of GLj; that normalize
F! and F° (respectively). The map V¥ leaves invariant both Lie(PT) and
Lie(P~). For x € {4+, —} let U* be the unipotent radical of P* and let S*
be the solvable, closed subgroup scheme of GLj; generated by U* and by
the image of the cocharacter u : G,, — GLjs that fixes FV and that acts
as the inverse of the identical character of G,, on F!. We remark that U*
1

is constructed canonically in terms of the F-isocrystal (Endp) (M[3]), ¢),

as Lie(U*)[%] is the Newton polygon slope *1 part of it. The cocharacter
i Gy, — GLjs is minuscule and it is a p-adic Hodge cocharacter analogue
to the classical Hodge cocharacters.

We identify naturally Lie(U") with Homyy ) (F°, F'), Lie(U™) with
Homyy () (F*', FY), Lie(S™) with Homyy () (F°, F') ® W (k)151, and Lie(S™)
with Homyy ) (F*, FY) @ W (k)1 (the last two identities are of W (k)-
modules). The W (k)-module

E = Endw(k)(FO) @ HomW(k)(Fl, FOYo{xe Endyy x) (FY)|trace of x is 0}

is left invariant by W. If p does not divide d = rkyy (1) (F 1), then we have
a direct sum decomposition Endyyz)(M) = E @ Lie(S™) left invariant by
V. In general (i.e., regardless of the fact that p does or does not divide
d), we can identify (Lie(S™), W) with (Endy ) (M)/E, ¥) in such a way
that Homyy 1) (F°, F1) gets identified with its image in Endyy (1) (M)/E and
11 maps to the image in Endyy () (M)/E of an arbitrary endomorphism
t € Endy ) (F') whose trace is 1 if d # 0; note that the W (k)-linear
isomorphism Lie(S*)=Endyy () (M)/E that produces such an identification
is not in general induced naturally by the inclusion Lie(S™) — Endyy ) (M).
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Let D;rv(k) be the p-divisible group of multiplicative type over W (k)
whose filtered Dieudonné module is (Lie(U™"), Lie(U™), p). We call it the
positive p-divisible group over W (k) of either D or (M, ). The p-divisible
group DO over k whose Dieudonné module is (Lie(S1), @) is called the
standard non-negative p-divisible group of either D or (M, ¢); it is the direct
sum of Q,/Z, (over k) and of the special fibre DT of D%(k).

Let D;V(k) be the étale p-divisible group over W (k) whose filtered
Dieudonné module is (Lie(U7),0,¥). We call it the negative p-divisible
group over W (k) of either D or (M, ). The p-divisible group D~ over k
whose Dieudonné module is (Lie(S™), ¥) is called the standard non-positive
p-divisible group of either D or (M, p); it is the direct sum of p (over k)

and of the special fibre D~ of D;V(k).

1.2.5. Deformation theory revisited. Let R := W (k)[[x1,...,Z4p—a)]]. Let
®r be the Frobenius lift of R that is compatible with ¢ and that takes x;
to 2 for all i € {1,...,d(r — d)}. Deforming D is equivalent to deforming
D10 The easiest way to see this is to start with a versal deformation of
D over Spec R and to show that the deformation of D) we get naturally
by identifying Lie(S™) with Endyy () (M)/E is versal. At the level of filtered
F-crystals over R/pR, this goes as follows.

Let u_,;, : Spec R — U~ be a formally étale morphism which modulo
the ideal Z := (z1,...,%q—q)) of R defines the identity section of U~.
We also identify u_ ., with an R-linear automorphism of M ®yy ;) R which
modulo 7 is 1ps. Faltings deformation theory (see [Fa2, Thm. 10]) and [Me,
Ch. II, Lem. 4.16] assure us that there exists a p-divisible group over Spec R
such that: (i) its reduction modulo 7 is Dy, and (ii) its filtered F-crystal
over R/pR is the quadruple

¢:= (M @wq R, F! QW (k) By Uiy (9 © Pr), V),

where V is an integrable, nilpotent modulo p connection on M ®yy (1) R that
is uniquely determined by u_, (¢ ® ®g). It is easy to see that the Kodaira—
Spencer map of V is an isomorphism. Thus we can naturally identify D(D)
with Spec R.

Similarly (via the mentioned W/(k)-linear isomorphism Lie(S™)=
Endyy () (M)/E) we have a natural identification D(D) = Spec R under
which the filtered F-crystal of the deformation of D) over D(D+(9) is
the following quadruple

¢t O =((Endy (1) (M)/E) @) R, Homy 1) (F°, F) @y R,
((10 by CDR)a v+(0))7

Uyniv
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where V() is the connection on (Endyy 1y (M)/E) @w ) R induced nat-
urally by V. The group scheme U~ acts naturally on Endyy ) (M)/E via
inner conjugation and passage to quotients and therefore u_, . acts accord-
ingly on (Endyy 1y (M)/E) @w ) R

We explain why €19 defines indeed a versal deformation of D), Let
U~ be the unipotent radical of the maximal parabolic subgroup scheme of
GLEndW(k)(M)/E that normalizes the image of W (k)t in Endyy ) (M)/E (see
Subsection 1.2.4 for t). The natural homomorphism U~ — GLEndW<k)(M)/E
is a monomorphism that induces an isomorphism ¢ : U~=U 1. At the
level of matrices this is equivalent to the following statement: if C is
a commutative W (k)-algebra and if z € Homyy ) (F', F°) @ x) C \ 0,
then for n¢ = lygy o +2 = (i(l)) € U (C) there exists y = (gg) €
Homyy () (F?, F*) @y () C such that the element

ncynal —y= <_$:‘Zi 2y> c EndW(k) (M) ®W(/c) C

has the property that the trace of —yz € Endy )(F') @w ) C is non-
zero. Here the 2 x 2 (block) matrices are with respect to the direct sum
decomposition M = F'@ F° and thus their entries are matrices themselves.

Let uumv :=qou,, :SpecR — U~T; it is a formally étale morphism
which modulo Z defines the identity section of U~T. This implies that ¢*(©)
defines indeed a versal deformation of D1(9),

Thus we can identify naturally D(D) with Spec R = D(D*(). But as
we have D+(0) Q,/Z,® DT, the classical Serre-Tate ordinary theory tells
us that the formal scheme deﬁned by D(D*(®) has a canonical structure
of a formal Lie group LT over Spf W (k). We recall that if C is a local,
artinian W (k)-algebra of residue field k, then the addition operation on the
set D(DH(0)(C) = L£*(C) is defined via the Yoneda addition law for short

exact sequences of p-divisible groups over C' that are of the following form
0— D} — DL - q,/z, — 0.
It is well known that £ is isomorphic to the formal Lie group of DW(k)
(see Lemma 5.3.3; see also the property 1.1 (h.b)).
Due to the identification D(D) = D(D*(), the formal scheme defined

by D(D) has also a natural structure of a formal Lie group £ which can be
identified with £7.

1.2.6. Sums of lifts. Let z3 be the addition of two Spf W (k)-valued points
z1 and zy of the formal scheme defined by D(D) with respect to L. For
i € {1,2,3} let F! be the lift of (M, ¢) that corresponds to z;. There exists a
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unique element u; € Ker(U~ (W (k)) — U~ (k)) such that we have u;(F!) =
F!. Let s; := u;—1p € Lie(U ™). Let ;" be the Spf W (k)-valued point of £
defined by z;. Let u) := q(W (k))(u;) € U~ (W (k)). The filtered Dieudonné
module associated to z; is (Endyy ) (M)/E, u (Homyy ) (FY, F1)), @), cf.
the constructions of Subsection 1.2.5. To the addition of short exact se-
quences mentioned in Subsection 1.2.5 (applied over quotients C' of W (k)),
corresponds the multiplication formula u?{ = uj ug. As ¢ is an isomorphism,
we get uz = ujug. In other words the lift Fi is the “sum” of F| and F} i.e.,
we have

1)

s3 = s1 + s2 (additively) or equivalently w3 = wujus (multiplicatively).

Ifp>3orif p=2andde {0,r}, then z3 is uniquely determined by us
(cf. property 1.2.1 (a)). If p=2and 1 < d < r—1, then it is well known that
z3 is uniquely determined by u3 up to a 2-torsion point of L(Spf W (k)) (this
is also a direct consequence of Proposition 9.5.1). Formula (1) guarantees
that in the case when k = k, the formal Lie group structure £ on the
formal scheme defined by D(D) is the one defined by the classical Serre—
Tate deformation theory (see properties 1.1 (h.a) and (h.b)). This holds
even if p=2and 1 < d <r — 1, as each automorphism of formal schemes
L= L that respects identity sections and whose composite with the square
endomorphism [2] : £ — £ is an endomorphism of formal Lie groups, is in
fact an automorphism of formal Lie groups.

1.2.7. Duality of language: positive versus negative. The trace form on
Endyy (1) (M) restricts to a perfect bilinear form

b:Lie(U™) x Lie(U") — W (k)

i.e., the natural W (k)-linear map Lie(U~)Y — Lie(U") defined by b is a
W (k)-linear isomorphism. This W (k)-linear isomorphism allows us to iden-
tify naturally D;/(k) with the Cartier dual (D‘;,(k))t of Da,(k), cf. properties
1.2.1 (b) and (c). As in Subsections 1.2.4 and 1.2.5, one checks that deform-
ing D is equivalent to deforming D~(©). The main advantage of working with
D~ ig that it involves simpler group theoretical arguments (like we do
not have to consider W (k)-linear isomorphisms Lie(S™)=Endy ) (M)/E)
which are more adequate for suitable generalizations. The main two disad-
vantages of working with D~ are: (i) we have to use the bilinear form b
%n order to i.dentify D‘fv(k) with (D;V(k))t and (ii) we have to work with ¥
instead of with ¢.
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1.3. Generalized language

1.3.1. Goal. The goal of the monograph is to generalize the results recalled
in Section 1.1 about ordinary p-divisible groups over k and their canonical
lifts, to:

e the abstract context of Shimura p-divisible objects over k (see this section
and the next one), and to

e the geometric context of good moduli spaces of principally polarized
abelian schemes endowed with specializations of Hodge cycles (see Sections
1.5 and 1.6).

For generalizing the notions of ordinariness and canonical lifts to the
abstract context, we do not require any deformation theory and accordingly
we do not construct explicitly abstract formal deformation spaces. Thus not
to make this monograph too long, we do not present here the generalization
of properties 1.1 (h) and (i) and of the deformation theories of [dJ], [Fa2,
Sect. 7], and [Zi2] to the abstract context. Moreover, in order to avoid
repetitions, the greatest part of the generalization of properties 1.1 (f) to
(i) will be stated only for the geometric context and will be a restricted
generalization in the case of properties 1.1 (h) and (i).

The formal deformation spaces over Spf W (k) we get in the geometric
context are provided by completions of local ring of integral models and
admit as well (due to Faltings deformation theory) a simple and concrete
direct description. Moreover they are expected to have natural structures of
commutative formal Lie groups as well as some other nilpotent structures.
In this monograph we mainly restrict to the case when these two types
of structures are expected to coincide (i.e., in the so called commutative
case): in this case we show that the formal deformation spaces do have
canonical structures of commutative formal Lie groups over Spf W (k) that
are isomorphic to formal Lie groups of a very specific type of p-divisible
groups over W (k).

Any future generalization of the property 1.1 (i) to the most general
geometric case will have to rely on a comprehensive theory of connections on
these formal deformation spaces; therefore in this monograph we mainly use
connections only to understand their Kodaira—Spencer maps. This theory of
connections will allow us in future work to define different natural structures
on the formal deformation spaces (including as well the “forcing” to get
formal tori) that will ease and enrich the study of these formal deformation
spaces.

See Section 1.7 for applications. See Section 1.8 for extra literature that
pertains to Sections 1.3 to 1.7. See Section 1.9 for our main motivation. See
Section 1.10 for more details on how Chapters 2 to 9 are organized. For a,
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beZ with b > a, let
[a,blz :={a,a+1,...,b} =[a,b]NZ.

We now follow [Va9, Subsect. 1.2] to introduce the language that will
allow us to generalize the classical Serre-Tate ordinary theory. To motivate
it, let Dyy(;) be the p-divisible group of an abelian scheme A over W (k)
and let (M, F! ¢) be its filtered Dieudonné module. Often the abelian

variety A% is endowed with a set of some type of cycles (algebraic, Hodge,

crystalline, etc.) normalized by the Galois group Gal(B(k)/B(k)) and this
leads to the study of quadruples of the form (M, F! ¢, G), where G is a
flat, closed subgroup scheme of GLys such that the Lie algebra Lie(Gp))
is normalized by ¢ and we have a direct sum decomposition M = F' @ F°
with the property that the image of a cocharacter G,, — GLj; obtained as
in Subsection 1.2.4, is contained in G. We think of G% as the subgroup
of GL My ) BH) that fixes the crystalline realizations of these cycles. In
this monograph we study the case when G is a reductive, closed subgroup

scheme of GLj,s. Moving from the geometric context of abelian schemes to a
more general and abstract context “related to” Shimura varieties, we have
the following basic definition.

1.3.2. Basic definition. A Shimura filtered p-divisible object over k in the
range [a,b] is a quadruple

(Ma (Fi(M))ie[a,b}Za 12 G)a

where

— M is a free W(k)-module of finite rank,

—(F{(M ))i€la,b), 18 @ decreasing and exhaustive filtration of M by direct
summands,

— ¢ is a o-linear automorphism of M []%], and

— (G is a reductive, closed subgroup scheme of GLjy,
such that there exists a direct sum decomposition M = @?_ F(M) for
which the following three properties hold:

(a) we have an identity F*(M) = @?:iﬁj(M) for all i € [a,b]z and
moreover ¢~ (M) = @°_ p ' F(M) (equivalently and moreover o' (M) =
Yo P F(M));

(b) the cocharacter of GLy; that acts on F*(M) via the —i-th power
of the identity character of G,,, factors through GG and this factorization
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o : G, — G is either a minuscule cocharacter or factors through Z%(G) i.e.,
we have a direct sum decomposition

Lie(G) = @je{—l,o,l}Fj(Lie(G))

such that p(3) acts (via the adjoint representation) on FY(Lie(G)) as the
multiplication with 477 for all j € {—1,0,1} and all § € G,,,(W (k));

(c) denoting also by ¢ the o-linear automorphism of Endp) (M [%])
that takes =z € EndB(k)(M[%]) to poxopl € EndB(k)(M[%]), we
have go(Lie(G)[%]) = Lie(G)[%] ie., (Lie(G)[%],gp) is an F-subisocrystal
of (Bndysgey (M[1]), ).

We call the triple (M, ¢, G) a Shimura p-divisible object over k in the
range [a, b]. Following [Pi], we refer to p as a Hodge cocharacter of (M, ¢, G).
We refer to the quadruple (M, (F'(M));ejqpj5: %, G) or to the filtration
(F*(M))ic[a,p], (of M) as a lift of (M, p, G) or as the lift of (M, ¢, G) defined
by . If (a,b) = (0,1), then we do not mention FO(M) = M and thus we
also refer to (M, o, G) (resp. to (M, FY(M), ¢, G)) as a Shimura (resp. as a
Shimura filtered) F-crystal over k and to (M, FY(M), ¢, G) or to F*(M) as
a lift of (M, p, G). Often we do not mention over k or in the range [a, b]. For
i € [a,blz let @; : F*(M) — M be the restriction of p~%p to F'(M). Triples
of the form (M, (F'(M));c[a,p]5+ %) show up in [La] and [Wi]. If m € N, then
the reduction modulo p™ of (M, (F*(M))ic(abl;> (¥i)icla);) 15 an object of
the category MFi, (W (k)) used in [FL], [Wi], and [Fal]. This and the fact
that Definition 1.3.2 can be adapted over arbitrary regular, formally smooth
W (k)-schemes, justifies our terminology “p-divisible object” (it extrapolates
the terminology object used in [Fal]). Splittings M = @f:aﬁ’i(M) of the lift
(Fi(M))z‘e[a,b]z of (M, p,G) show up first in [Wi].

See [Va9, Subsect. 1.2] for the main reasons we use the above language
and not the rational language of isocrystals with a A-structure used in
[Kol] and [RR, Def. 3.3] (here A stands for a suitable Q,-form of Gpy)).
In particular, our language allows us to work over all perfect fields without
assuming the existence of a suitable Z, structure of (M, ¢, G) and to consider
different invariants and properties which in general depend on the choice of
the W (k)-lattice M of M [%] (such as the isomorphism class of the G-module
M, etc.).

1.3.3. Parabolic subgroup schemes. Let
FO(Lie(G)) := F(Lie(G)) & F(Lie(G)).

Let P be the normalizer of (F'(M ))iclabl; 0 G it is a parabolic subgroup
scheme of G whose Lie algebra is F°(Lie(G)) (cf. Subsection 2.5.3).



1. Introduction 15

By the non-negative parabolic subgroup scheme of (M, p,G) we mean
the parabolic subgroup scheme

P (p)

of G with the properties that Lie(P[ (cp))[%] is normalized by ¢ and
that all Newton polygon slopes of (Lie(Pg(np))[%],go) (resp. of (Lie(G)[%]/

Lie(Pg(cp))[%], ¢)) are non-negative (resp. are negative). By the Levi sub-
group of (M, ¢, G) we mean the unique Levi subgroup

LOG(‘P)B(k)

of P&L(‘P)B(k) with the property that Lie(L¢(¢)p()) is normalized by ¢.
In Subsections 2.6.1 and 2.6.2 we will argue following [Va9, Subsect. 2.3]
the existence of the subgroup schemes Pg (¢) and L () gx). In Subsection
2.6.2 we also check that all Newton polygon slopes of (Lie(L%(gp)B(k)), ®)
are 0 and that Lie(LY(¢)pk)) is the maximal B(k)-vector subspace of
Lie(PZ () p(x)) which has this property.

1.3.4. A new Hasse—-Witt type of invariant. We consider the product de-
composition G2 = [Lic; Gix of sz into simple, adjoint groups over k, cf.
[Til, Subsubsect. 3.1.2]. It lifts naturally to a product decomposition

(2) ¢ =T]G:

icl

of G* into simple, adjoint group schemes over W (k), cf. [DG, Vol. III,
Exp. XXIV, Prop. 1.21]. We have Lie(G*!)[1] = [Lie(G), Lie(G)][3]. Thus
Lie(G*!) = @;¢rLie(G;) is naturally a Lie subalgebra of Lie(G)[%].

By the FSHW shift of (M, ¢, G) we mean the o-linear endomorphism

U : Lie(G*) — Lie(G*)

which for i € I takes z € Lie(G;) to ¢(z) or to p(p(x)) = ¢(pz) depending
on the fact that the composite of p : G,, — G with the projection
epimorphism G — Gj is or is not trivial. The existence of the map W is
checked in Subsection 2.4.3. Let ¥ : Lie(G2!) — Lie(G34) be the reduction
modulo p of ¥; we call it the FSHW map of (M, p,G). By the FSHW
invariant of (M, p,G) we mean the following dimension

—=dim(G34)

(M, o, G) := dimy(NpenIm(¥")) = dimy (Im(¥ )) € NU{0}.

Here FSHW stands for Faltings—Shimura—Hasse-Witt. If for each element
1 € I the composite of u : G,, — G with the projection epimorphism
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G — @ is not trivial, then ¥ is a usual Tate twist of ¢ (i.e., for each
element z € Lie(G?!) we have ¥(z) = pp(z)).

1.3.5. Two different notions of ordinariness and of canonical lifts. We say
(M, (FY(M));efa bl s G) is a Uni-canonical lift (of (M, ¢, G)) if LE(©) g
is a subgroup of Ppgy. If moreover P () is a (closed) subgroup scheme of
P, then we say (M, (F*(M))ic[a,b],, ¥, G) is a Sh-canonical lift (of (M, ¢, G)).

We say (M, ¢, G) is Uni-ordinary (resp. Sh-ordinary) if it has a lift that
is a Uni-canonical (resp. that is a Sh-canonical) lift.

Here Uni stands for unique and Sh stands for Shimura. If G = GLy,
and 0 < a < b <1, then it is easy to see that the notions Uni-ordinary and
Sh-ordinary (resp. Uni-canonical lift and Sh-canonical lift) coincide with the
usual notion ordinary (resp. canonical lift) introduced in Section 1.1.

The notion Uni-ordinariness is more general than the notion Sh-
ordinariness. Uni-canonical lifts which are not Sh-canonical lifts typically
show up when ¢ ® o produces a non-trivial permutation of the simple
factors of Lie(G‘g‘@) (see Subsections 4.3.3 to 4.3.5 for several examples

and see Section 7.5 for the simplest geometric examples).
Next we introduce two extra concepts that pertain to Shimura p-
divisible objects.

1.3.6. Definitions. (a) By an endomorphism of (M, (F'(M))ciapjz: % G)
(resp. of (M, ¢, G)) we mean an element e € FO(Lie(G)) (resp. e € Lie(GQ))
that is fixed by ¢.

(b) Let g1,92 € G(W (k)). We say (M, g1, G) and (M, g2, G) are inner
isomorphic, if there exists an element h € G(W(k)) such that we have

hgi1p = gaph. We also refer to such an h as an inner isomorphism between
(M7 g1, G) and (Mv 929, G)

1.3.7. Characterization of Uni-canonical lifts in terms of endomorphisms.
We have L(¢) B(k) < Ppg if and only if we have an inclusion
Lie(L& () pr)) € Lie(Pp), cf. [Bo, Ch. II, Sect. 7.1]. Thus LY%(¢) k) <
Pp, if and only if Lie(L%(gp)B@)) C Lie(PB(E)). But

£:= Lie(GW(E)) N{z e Lie(L%(‘P)B(E))W ® op(r) =z}

is the Lie algebra over Z, of endomorphisms of (M ®yy gy W(k),¢ ®
(ot GW(E)) and moreover Lie(L%(go)B(E)) is B(k)-generated by £. Thus
LY(p)pky < Ppgy if and only if we have £ C Lie(PB(E)) and Eherefore
if and only if the inclusion £ C Lie(PW(E)) = FO(Lie(G)) ®@w k) W (k) holds.
Thus (M, (F'(M))e[aly: > G) is a Uni-canonical lift if and only if each

endomorphism of (M ®yy 1) W (k), p®oy, GW(E)) is as well an endomorphism

of (M @y W(k), (FY(M) Qwxy W(k))icia s> ¢ @ o, G-
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1.3.8. Definitions. Let M be a free W (k)-module of finite rank dy;. Let
(FH(M ))iclap), be a decreasing and exhaustive filtration of M by di-

rect summands. Let ¢ be a o-linear automorphism of M [ | such that

we hav N (M) = ZZ LD UFY(M). If @ > 0, we refer to the triple
(M, (F ( ))Ze[a bz ) as a filtered F-crystal over k.
(a

) We say (M, (Fi(M))ie[a,b}Z, @) is circularif there exists a W (k)-basis
B:={ey,.. .yé€d } for M such that for all j € [1,d ]z we have

<»5(€j) = ij€j+17

where eq, = ey and e; € F™i (M 1)\ F™tY (M) with FPHY(M) := 0 and
with m; € [a, blz. If moreover the function fg : Z/dy;Z — [a, b]z defined by
f5([j]) = m; is not periodic, then we say (M, (F"(M));c(ap], @) is circular
indecomposable.

(b) We say (M, (Fi(M))ie[mb]z, @) is cyclic if there exists a direct sum

decomposition (M, (FigM))ie[a,b]Zz¢)~: @4ei~(Ml7 (F*(M) N M)ic(a)y ?1)
such that for each [ € L the triple (M;, (F"(M) N M;)ic(a,p),, P1) is circular
indecomposable.

(c) We assume that 0 < a < b < 1 and that there exists a p-divisible
group DW(k) over W (k) whose filtered Dieudonné module is (M, F1(M), §).

We say that DW( k) O r (M, F*(M), ) is circular indecomposable (resp. circu-

77

lar), if (M (F{(M ))iefo,1}> ) is circular indecomposable (resp. is circular).
We say DW(k) is cyclic if it is a direct sum of p-divisible groups over W (k)
that are circular indecomposable.

1.4. Main results on Shimura p-divisible objects

In this section we state our main results on the objects we have defined
in the previous one. Let (M, ¢, G) be a Shimura p-divisible object over k
in the range [a,b]. For each element g € G(W(k)) the triple (M, gp, G) is
as well a Shimura p-divisible object over k. One refers to {(M, gp,G)|g €
G(W(k))} as a family of Shimura p-divisible object over k in the range
[a,b]. See (2) for the product decomposition G*! = [],.; G;. We have the
following three basic results (most of them are stated in terms of the family
{(M, gp,G)|g € G(IW(k))}, due to the sake of flexibility and of simplifying
the proofs).

1.4.1. Theorem. Let g € G(W (k)). The following two statements are equiv-
alent:

(a) the triple (M, gp,G) is Sh-ordinary;
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(b) for each element g1 € G(W (k)) the Newton polygon of (M, gip) is
above the Newton polygon of (M, gp).

Moreover, if (M, gp,G) is Sh-ordinary, then:

(c) for each element g1 € G(W (k)) we have an inequality I(M, g1p, G) <
I(M, go,G).

If G is quasi-split i.e., it has a Borel subgroup scheme (for instance, this
holds if either k is a finite field or k = k), then Theorem 3.2.4 identifies
all situations in which the statements 1.4.1 (c) and 1.4.1 (a) are in fact
equivalent (i.e., 1.4.1 (¢) = 1.4.1 (a)). In particular, if G = GLy, then
b—a € {0,1} (cf. property 1.3.2 (b)) and the statements 1.4.1 (c) and 1.4.1
(a) are equivalent (cf. Theorem 3.2.4).

1.4.2. Theorem. Let dys := vkyy ) (M). The following four statements are
equivalent:

(a) the triple (M, ¢, G) is Uni-ordinary;

(b) there exists a unique lift (F§(M))icap), of (M, e, G) such that the

Levi subgroup L () ey of (M, ¢, G) normalizes Fg(M)[%] for alli € [a,b]z;
(c) there exists a unique Hodge cocharacter py : G — GW(E)

of (M @wwy W(k),¢ @ o, GW(E)) such that there exists a W (k)-basis

{e1, ... eaqy } for M @y W (k) with the property that for all j € [1,dy]z

the W (k)-span of e; is normalized by Im(uo) and we have ¢ @ or(e;) =
pier,(j), where nj € [a,b]z and where my is a permutation of the set
[1,dn)z;

(d) we have a direct sum decomposition of F-crystals over k

(M,p~ %) = ®yeq(M,y,p %p)

with the properties that: (i) for each rational number ~y, either M, = 0 or
the only Newton polygon slope of (M,,p~%p) is 7, and (ii) there ezists a
unique lift (F{(M))iclap), of (M, o, G) such that we have an identity

Fi{(M) = @&,cq(F{ (M) N M,) Vi€ [a,b]z.

If (M, ¢, Q) is Uni-ordinary, then we have Fi(M) = F{(M) for all i €
[a,blz. If (M, @, G) is Uni-ordinary and k = k, then (M, (Fé(M))ie[a,b}Z,cp)
1s cyclic.

1.4.3. Theorem. Let g*! € G*(k) be the image of an element g € G(W (k)).
We assume that (M, p, G) is Sh-ordinary and that k = k. Then statements

1.4.1 (a) and (b) are also equivalent to any one of the following two
additional statements:
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(a) the Shimura p-divisible objects (M, ¢, G) and (M, gp,G) are inner
isomorphic;

(b) there exists an element h € G*(k) such that as o-linear endomor-
phisms of Lie(sz) we have an identity h¥ = g2Uh.

1.4.4. Corollary. There exists an open, Zariski dense subscheme U of Gad
such that for each perfect field k that contains k and for every element
g, € GW (k)), the triple (M @ ) W (k), gi.(e®0oy), Gy (i) is Sh-ordinary
if and only if we have g%d e U(k).

If G = GLyy, then b —a € {0,1} and up to a Tate twist we recover
the classical context of Section 1.1. Thus Subsection 1.3.7 and the above
results generalize the interpretations of ordinary p-divisible groups and
their canonical lifts in terms of (filtered or truncated modulo p) Dieudonné
modules. We now include an example that illustrates many of the above
notions and results.

1.4.5. Example. We assume that there exists a direct sum decomposition
M = My ® M; ® My with the property that there exist W(k)-bases

{el |7 € [1,4]z} for M; such that we have ¢(e Z) = p"”e;'H, where
the upper index i € {0,1,2} is taken modulo 3 and where n; ; € {0,1}
is non-zero if and only if we have j —i g 1. Thus (a,b) = (0,1). The
Newton polygon slopes of (M, ) are 0, 3 , and 1, all multiplicities being
3. Let FO(M) be the W (k)- bpan of {e5]0 g i <2,2<j—i<4—i}. Let
FY(M) = F'(M) be the W (k)-span of {efl0<i<2,1-i<j—i<1}. Let
FO(M) =M = FO(M)® FY(M) and G = GLag, Xy GLan Xw ) GLag.
Let 41 : G, — G be the cocharacter that fixes FO(M) and that acts on
FY(M) = F'(M) via the inverse of the identical character of G,,. The
triple (M, F1(M), ¢, G) is a Shimura filtered F-crystal.

The parabolic subgroup scheme Pg (p) of G is the Borel subgroup
scheme of G that normalizes the W (k)-span of {e%[0 <i <i,j € [1,4]z} for
all all i € {0,1,2}. Thus PZ () normalizes F'(M). Therefore (M, p,G) is
Sh-ordinary and F*(M) is its Sh-canonical lift.

As o-linear endomorphisms of Lie(G®!), we have %\If = ¢. Thus
I(M,,G) computes the multiplicity of the Newton polygon slope —1
of (Lie(Gad),Lp) and therefore it is 3. For i € {0,1,2} and ji, j2 € [1,4]g,
let €, g2 € Endyy ) (M;) be such that for j3 € [1,4]z we have e m(ezs) =
6ja,ja€5, - If j1 # ja, then we have el s € Lie(G*d). We have U(ey,) = effll
and W(e} ;) = pet’y'. Let n™ (resp. n™) be the W (k)-submodule of Lie(G*)

generated by all elements fixed by U3 (resp. by I%\Il:)’). We have

= @?:Ow(k)ei,l and n* = EB?:OW(k:)eiA.



20 1. Introduction

The normalizer Pg () (resp. F’CJTC (p)) of n™ (resp. of n) in G is the parabolic
subgroup scheme of G whose Lie algebra is the W (k)-span of

{e, ;,10 <@ <2, either 1 < jp < ji <4or (ji,2) = (2,3)}

(resp. of {e} |0 <@ < 2, either 1 < ji < ja < 4 or (j1,52) = (3,2)}).
Thus P () is a proper subgroup scheme of P (). Let LY (¢) be the Levi
subgroup scheme of either Pg () or P (), whose Lie algebra is the W (k)-
span of {e;j,eéﬁ,eé’ﬂo < i< 2,5 € [1,4]z}. The group scheme L% () is
a PGL3 group scheme, the cocharacter u factors through E%(gp), and the
triple (M, ¢, L%(¢)) is also Sh-ordinary.

Let w € LY(p)(W (k)) be such that it fixes eé- for (i,7) ¢ {(0,2),(0,3)}
and it interchanges 3 and e3. The Newton polygon slopes of (M,wep)
are 0, %, and 1 with multiplicities 3, 6, and 3 (respectively). As w fixes
n~, n~ is W(k)-generated by all elements of Lie(G®?) fixed by (w¥)3. By
applying this over k we get that I(M, we, G) = 3. But the triples (M, wy, G)
and (M, wy, L% (¢)) are not Sh-ordinary, as eég € Lie(Pg%(@) (wy)) and as

e o(FH(M)) @wy k € F'(M) @w k. Let g € G(W(k)) be such that we
have I(M, gp, G) = 3. Up to an inner isomorphism we can assume that g €
LY%(p) (W (k)), cf. property 3.3 (b). For i € {0, 1,2}, the intersection L% (¢)N
GL);, normalizes F1(M) N M; if and only if i # 1 (i.e., p has a non-trivial
image only in that PGLy factor of L2(p)*! which corresponds to i = 1).
This implies that I(M, g, E%(gp)) is the multiplicity of the Newton polygon
slope — % of (}ie(i%(tp)), ge). In particular, we have I(M, we, L% (¢)) = 0 <
3=I(M,p,L(9).

In general, for g € L% ()(W (k)) the triple (M, gp, G) is Sh-ordinary if
and only if the triple (M, gy, L% () is Sh-ordinary (cf. Theorem 3.7.1 (e)).

1.4.6. Remark. As Theorems 1.4.1 and 3.2.4 point out, one can not al-
ways use only one F'SHW invariant in order to “detect” Sh-ordinariness.
However, as Example 1.4.5 points out, always one can use a well defined
sequence of F'SHW invariants in order to “detect” Sh-ordinariness. Exam-
ple 1.4.5 also points out that the proofs of Theorems 1.4.1, 3.2.4, and 1.4.3
will involve an induction on dim(Gy) and will appeal to opposite parabolic
subgroup schemes of G, such as 155(90) and Pér(gp)

We now shift our attention from the abstract context of Sections 1.3
and 1.4 to a geometric context that involves abelian schemes and Shimura
varieties of Hodge type.

1.5. Standard Hodge situations

We use the standard terminology of [De5] of Hodge cycles on an abelian
scheme Ay over a reduced Q-scheme Z. Thus we write each Hodge cycle v
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on Az as a pair

('UdRa Uét)7

where vgr and vg are the de Rham and the étale (respectively) component
of v. The étale component vg as its turn has an [-component vét, for each
prime [ € N. For instance, if Z is the spectrum of a field { and if { is a fixed
algebraic closure of {, then vé’t is a suitable Gal(f/1)-invariant tensor of the
tensor algebra of H}, (A7, Qp) ® (H} (A%, Qp))Y ® Qp(1), where Z := Spec {
and where Q,(1) is the usual Tate twist. If moreover I is a subfield of C,
then we also use the Betti realization of v: it corresponds to vgr (resp.
to vét) via the standard isomorphism that relates the Betti cohomology
with Q-coefficients of Az x z Spec C with the de Rham (resp. the Q; étale)
cohomology of A (see [De5]).

For generalities on Shimura pairs, on their adjoints, reflex fields, and
canonical models, and on injective maps between them we refer to [De2,3],
[Mil,2], and [Va3, Subsects. 2.1 to 2.10]. For different types of Shimura
varieties we refer to [De3], [Mi2], and [Va3, Subsect. 2.5]. We now follow
[Va9, Subsect. 5.1] to introduce standard Hodge situations. They generalize
the standard PEL situations used in [Zil], [LR], [Ko2], and [RZ]; however,
the things are more technical than in these references due to the passage
from tensors of degree 2 (polarizations and endomorphisms) to tensors of
arbitrary degree on which no special properties are imposed. Here “tensors”
refer to different cohomological realizations of Hodge cycles on abelian
varieties.

1.5.1. Basic notations. We start with an injective map of Shimura pairs

The pair (W,%) is a symplectic space over Q and S is the set of all
homomorphisms Resc/r G — GSp(W,¥)r that define Hodge Q-structures
on W of type {(—1,0),(0,—1)} and that have either 2miy) or —2miy) as
polarizations. One calls (GSp(W, ), S) a Siegel modular pair and (Gq, X)
a Shimura pair of Hodge type. The group Gq is reductive over Q and is
identified via f with a subgroup of GSp(W,%). The set X is a Gq(R)-
conjugacy class of homomorphisms Resg/rGnm — Gr whose composites
with fr belong to S. Both S and X have canonical structures of hermitian
symmetric domains, cf. [De3, Cor. 1.1.17].

Let L be a Z-lattice of W which is self-dual with respect to 9 (i.e., such
that v induces a perfect, alternating form v : L x L — Z). Let Z,) be the
localization of Z at its prime ideal (p). Let L, := L ®z Z(,). We assume
that p and L are such that:
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(£) the schematic closure Gy, of Gq in GSPp(L(,),v) is a reductive group
scheme over Z).

Let Kp, := GSp(L,)(Zp). Let
Hy, = Gz(p)(zp) = GQ(QP) N K.

Let r := M € N. Let Aj (resp. Agep)) be the Q-algebra of finite

adeles (resp. of finite adeéles with the p-component omitted). We have
Ap=Q, x AP

Let x € X. Let u, : G, — G¢ be the Hodge cocharacter that defines the
Hodge Q-structure on W defined by x. We have a direct sum decomposition
W ®q C = F{l’o @ Fg’_l such that G,, acts via u, trivially on Ff’_l and
through the identity character on F 10,

The reflex field F(Gq, X) of (Gq, X) is the subfield of C that is the field
of definition of the Gq(C)-conjugacy class of cocharacters of G'¢c defined by
(any) pz; it is a number field. The canonical model Sh(Gq, X) of (Gq, X)
over E(Gq, X) is a Shimura variety of Hodge type. Let v be a prime of
E(Gq, X) that divides p and let k(v) be its residue field. Let O,y be the
localization of the ring of integers of E(Ggq, X) with respect to v. As Gz, is
a reductive group scheme, the prime v is unramified over p (cf. [Mi2, Cor.
4.7 (a)]). Our main data is the triple

(f, L,v)

for which (#) holds, to be called a potential standard Hodge situation.

For the notion of an integral canonical model of a quadruple of the form
(Gq, X, Hp,v) we refer to [Va3, Defs. 3.2.3 6) and 3.2.6] (see also [Mil, Sect.
2] and [Mi2]). Let

M

be the Z,)-scheme which parameterizes isomorphism classes of principally
polarized abelian schemes over Z,)-schemes that are of relative dimension r
and that have compatible level s symplectic similitude structure for all s €
N\ pN. The scheme M together with the natural action of GSp(W, w)(Agcp))
on it, is an integral canonical model of (GSp(W,v), S, Kp,p) (see [Va3,
Ex. 3.2.9 and Subsect. 4.1] or [Mil, Thm. 2.10]). These structures and
this action are defined naturally via (L,v) (see [Va3, Subsect. 4.1]) and
the previous sentence makes sense as we can identify naturally Mgq with
Sh(GSp(W, ), 5)/Kp.

As Z(GSp(L(p),v))(Z(p)) is a discrete subgroup of Z(GSp(W, w))(Agcp)),

we have Mq(C) = GSp(Ly), ) (Zp)\(S x GSp(W,1)(AP) (cf. [Mi2,
Prop. 4.11]). We also have

Sh(Gq. X)/H,(C) = Gz, (Z \[X x (Go(AY'\Z(Ca,,))(Z)):
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where Z(Gz, )(Zy)) is the topological closure of Z(Gg, )(Zg)) in
Z(Gq)(A}p)) (cf. [Mi2, Prop. 4.11]). We have a morphism Sh(Gq, X)/H, —
ME(Gq,x) of E(Gq, X)-schemes whose pull-back to C is defined by the
natural embedding X x GQ(Agcp)) — S x GSp(W, w)(A;p)) via natural pas-

sages to quotients, cf. [De2, Cor. 5.4]. The last two sentences imply that
Z(Gz,, (L)) = Z(Ga,) ) (L)) (cf. also [De2, Cor. 2.1.11]). Thus we have

Sh(Gq, X)/Hy(C) = Gz, (Zy)\(X x Go(A'Y)).

We easily get that Sh(Gq,X)c/Hp is a closed subscheme of Mc. Thus
Sh(Gq, X)/H, is a closed subscheme of Mg, x)- Let

N

be the normalization of the schematic closure of Sh(Gq, X)/H, in Mo,
Let
(A, Ax)

be the pull-back to N of the universal principally polarized abelian scheme
over M. Let

(Va)aer
be a family of tensors in L,enWV®™ ®q W®" such that Gq is the subgroup
of GLyy that fixes v, for all o € J. As Gq is reductive and Z(GLw ) < Gq,
the existence of the family (v4)aes is implied by [Deb, Prop. 3.1 c)].

The choice of L and (v4)acy, allows a moduli interpretation of
Sh(Gq, X) (see [De2,3], [Mi2], and [Va3, Subsect. 4.1 and Lem. 4.1.3]). For
instance, the set of complex points Sh(Gq, X)(C) = Gq(Q)\(X x Gq(Ay))
is the set of isomorphism classes of principally polarized abelian varieties
over C that are of dimension r, that carry a family of Hodge cycles indexed
by the set J, that have compatible level s symplectic similitude structure
for all s € N, and that satisfy some extra axioms.

This interpretation endows the abelian scheme A E(Gq.X) with a family
(w)aes of Hodge cycles whose Betti realizations can be described as
follows. Let

w = [xungw] € Sh(GQ7X)/Hp(C) = GZ(p)(Z(P))\(X X GQ(A;p)))

where z,, € X and g, € Gq(Agcp)). Let Ly, be the Z-lattice of W such

that we have L, ®z Z = gu(L ®z Z); here we view g, as an element of
Gq(Af). Let (Aw,Aa,) == w*((A, A4)p(Gy,x))- Then A, is the complex
abelian variety whose analytic space is

Ay(C) = Ly, \W ®q C/F2 1,
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the principal polarization A4, of A, is defined by a suitable Gy, (Z,))-
multiple of ¢, and w* (wa‘l) is the Hodge cycle on A,, whose Betti realization
is the tensor v, of the tensor algebra of WY ©W = (L; ©zQ)® (Ly, ®2Q).

Let Ly := L ®z Zp = L) @z, Zp. Let 1V be the perfect, alternating
form on either Lz/p) or Ly that is defined naturally by . We have natural

identifications

Hét(Awa Z,) = ng ®g Ly =L @z Zp = Lz
A) is g,
and (ii) the perfect form on LY ®gz Z, that corresponds naturally to Aa, is
a Gy (Zp) )-multiple of Y.

Let ' be the involution of Endg, (L(,) defined by the identity
P(b(x),y) = ¢(x,b'(y)), where b € Endg, (L)) and z, y € L,). Let
B :={b € Endg, (L(,))|b fixed by Gz, }. We say (f,L,v) or (f,L,v,B) is
a standard PEL situation if the following axiom holds:

(PEL) B is normalized by ', B @z, W(F) is a product of matriz W (F)-
algebras, and Gq is the identity component of the subgroup of GSp(W, )
that fizes all elements of B[%].

under which: (i) the p-component of the étale component of w*(w

If moreover Gq is the subgroup of GSp(W,v) that fixes all elements of
B[%}, then we also refer to (f, L,v) or to (f,L,v,B) as a standard moduli
PEL situation.

1.5.2. The abstract Shimura F-crystal. The isomorphism L-=L" induced by
¢ allows us to identify Gz, with a closed subgroup scheme of GL Ly-
Let Tp be a maximal torus of a Borel subgroup scheme By of Gz,. Let

1o = G = Tow(k(v))

be an injective cocharacter such that the following condition holds (cf. [Mi2,
Cor. 4.7 (b)]):

(a) under a monomorphism W (k(v)) — C that extends the composite
monomorphism O,y — E(Gq, X) — C, it is Go(C)-conjugate to the Hodge
cocharacters pu, : Gy, — Ge.

We will choose pg such that moreover we have the following property:

(b) if Mo := L @z, W (k(v)) = F} @ FY is the direct sum decomposition
such that G, acts via yg trivially on F{ and as the inverse of the identical
character of G,,, on Fyi, then Bo,w (k(v)) normalizes Fy.

We emphasize that p is uniquely determined by properties (a) and (b).
Let o = (lpy @ op@y) © po(3) = My — Mo. We have ¢y ' (My) =
%Fol @ F§ and @o(Lie(Gpky)) = Lie(Gpp))). Thus the quadruple
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(Mo, F§, o, Gw (k(v))) 1s a Shimura filtered F-crystal and the Hodge cochar-
acter pg defines the lift Fj. We refer to the triple

Co := (Mo, v0, Gw (k(v)))

as the abstract Shimura F-crystal of (f,L,v). Up to a W(k(v))-linear
automorphism of My defined by an element of G'z,(Z,), Co does not depend
on the choices of Ty and By (as all pairs of the form (Ty, Bo) are Gz, (Z,)-
conjugate, cf. Subsection 2.3.8 (d)).

1.5.3. Definition. The potential standard Hodge situation (f, L,v) is called
a standard Hodge situation if the following two conditions hold:

(a) the O(y-scheme N is regular and formally smooth;

(b) for each perfect field k of characteristic p and for every W (k)-valued
point 2 € N (W (k)), the quadruple (M, F!, p,G) is a Shimura filtered F-
crystal; here (M, F'!, ) is the filtered Dieudonné module of the

p — divisible group D, of A:=2z"(A)

and G is the schematic closure in GLj; of the subgroup of GLM[ 1y =
P

GLHéR(A/W(k))[%] that fixes the de Rham component ¢, of z*E(qux) (w)
for all « € J.

The de Rham component t, is a tensor of the tensor algebra of M[:] @

1
p
MY[}] which is fixed by ¢, cf. [Va9, Cor. 5.1.7].

1.5.4. Shimura F-crystals attached to points of AN(k). We assume that
(f,L,v) is a standard Hodge situation and we use the notations of Subsec-
tion 1.5.3. We refer to the quadruple (M, F! ¢, G) as the Shimura filtered
F-crystal attached to z € N(W (k)). Let y € N (k) be the point defined nat-
urally by z. The triple (M, ¢, (ta)acs) depends only on the point y € N (k)
and not on the lift z € N (W (k) of y, cf. [Va9, p. 69] or Proposition 6.2.7

(d). Thus we call (M, ¢, G) as the Shimura F-crystal attached to the point
y € N(k).

1.5.5. Remarks. (a) If the condition 1.5.3 (a) holds, then A is an integral
canonical model of (Gq, X, Hp,v) (cf. [Va3, Cor. 3.4.4]). If p > 5, then
the condition 1.5.3 (a) holds (cf. [Va3, Subsect. 3.2.12, Prop. 3.4.1, and
Thm. 6.4.2] and its corrections in [Va7, Appendix]). See [Va3, Subsects. 6.5
and 6.6] for the first general ways to construct standard Hodge situations.
For instance, if (f,L,v) is a potential standard Hodge situation and if
p > max{5,r} (see Subsection 1.5.1 for r), then (f,L,v) is a standard
Hodge situation (cf. [Va3, Thm. 5.1, Rm. 5.8.2, and Cor. 5.8.6]). In [Val2] it



26 1. Introduction

is proved that each potential standard Hodge situation is in fact a standard
Hodge situation. In [Ki] it is claimed that a potential standard Hodge
situation is in fact a standard Hodge situation provided for p = 2 the 2-rank
of each abelian variety over F which is a pull-back of A is 0.

(b) A standard PEL situation is a standard Hodge situation, provided
either p > 3 or it is a standard moduli PEL situation (see [Zil], [LR], [Ko2],
[RZ], and [Va3, Ex. 5.6.3]; the assumption that B[%] is a Q-simple algebra
used in [Ko2, Sect. 5] for p > 2 and thus also in [Va3, Ex. 4.3.11] with p > 3,
can be eliminated).

1.5.6. Shimura types. We review the Shimura types. Let (Gan, X2d) be the
adjoint Shimura pair of (Gq, X); thus X2 is the Gad(R)—conjugacy class
of the composite of any element Resc/pGm — Gr of X with the natural
epimorphism Gg — Gzﬁd. In this subsection we assume that the adjoint group
Gad is non-trivial. Let (Gq, X) be a simple factor of (Gad,Xad); thus Gq is
a simple group over Q that is a direct factor of Gad. Let X be the Lie type of

the simple factors of G¢. The existence of the cocharacters py : G — Ge
that act on W ®q C via the trivial and the identical character of G,,, implies
that (see [Sa|, [De3], [Sel], [Pi2, Table 4.2], etc.):

(i) X is a classical Lie type;

(ii) if f is a simple factor of Lie(é%d), then the weight w of each simple
f-submodule of W ®q C, is a minuscule weight.

We recall that w can be: any fundamental weight if X = Ay, the
fundamental weight w, if X = By, the fundamental weight o if X = Oy,
and any one of the three fundamental weights w1, wy_1, wy if X = D, with
€ > 4; see either the mentioned references or [Bou3, Ch. VIII, Subsect. 7.3,
Rm.]. If X is Ay, By, or Cy with ¢ € N, then we say (GQ, ) is of X type.
We assume now that X is Dy with £ > 4. Then (GQ, X) is of either D} or
DE type, cf. [De3, Table 2.3.8]. If (Gq, X) is of DF! (resp. of DF) type, then
each non-compact, simple factor of the identity component of the real Lie
group Ggr(R) is isogenous to SO*(2¢) (resp. to the identity component of
SO(2,2¢—2)) and the converse of this holds for £ > 5 (see [He, Ch. X, Sect.
2] for the classical semisimple, real Lie groups SO*(2¢) and SO(2,2¢ — 2)).

We mention that besides the Shimura types mentioned above, we have
precisely three extra ones. The three extra Shimura types are D;nixed with
>4, Eg, and E7. Abstract Theorems 1.4.1 to 1.4.3 apply to all of them.

We have the following concrete (i.e., geometric) form of Section 1.4.
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1.6. Main results on standard Hodge situations

Let (f,L,v) be a standard Hodge situation. Let (A,A4) be the
principally polarized abelian scheme over A introduced in Section 1.5.
Let y € N(k). Let z € N(W(k)) be a lift of y. Let the quintuple
(M, F", ¢, (ta)acs,G) be as in Definition 1.5.3; thus the triple (M, ¢, G) is
the Shimura F-crystal attached to the point y € N (k).

Let Co := (Mo, 0, Gw(k(w))) be the abstract Shimura F-crystal of
(f, L,v), cf. Subsection 1.5.2. Let U;" := UEW(k(U))((pO) be the unipotent

radical of the parabolic subgroup scheme P5W(k(v))(900) of Gw (k(v)), cf.
Subsection 1.3.3. Let
JoeNU {0}

be the nilpotent class of U(T .

1.6.1. Theorem. There exists an open, Zariski dense, GQ(A}p ))—im)am'ant
subscheme O of Ny such that for a point y € N(k) we have y € O(k) if
and only if one of the following four equivalent statements holds:

(a) the Shimura F-crystal (M, p, Q) attached to y is Sh-ordinary;

(b) the Newton polygon of (M, ) is the Newton polygon My of Cy (i.e.,
Of (M07 SOO));

(c) there exists a Lie isomorphism Lie(@?}S(E))%Lie(G;g(E)) with the

properties that: (i) it is defined naturally by a B(k)-linear isomorphism
M®W(k)B(E)%M()@W(k(v))B(E) which takes to, to vy for alla € J, and (ii)
its reduction modulo p defines an isomorphism between the FSHW maps
of the triples (M @y ) W(k), ¢ ® % GW(E)) and Co @ k = (M QW (k(v))

W(k), o ® O%s GW(E));

(d) the Newton polygon of (Lie(G®),y) is the Newton polygon of
(Lie(G%‘c}(k(v))), ©0)-

If 39 < 2, then the above four statements are also equivalent to the

following one:

(e) we have an equality I(M,p,G) = I(Co) (equivalently, we have an

inequality I(M, o, G) > 1(Cp) ).

Moreover, ifk = k and ify, y1 € N'(k) are two points that factor through
the same connected component of O, then there exists an isomorphism
(M, p)=(Mi, 1) defined by a W (k)-linear isomorphism MM, that takes
ta to t1 o for all oo € J; here (My, 1, (t1,a)acy) is the triple that defines
the Shimura F-crystal (M, p1,G1) attached to the point y; € N (k).
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1.6.2. Theorem. Let y € N(k) be such that its attached Shimura F-crystal
(M, ¢, G) is Uni-ordinary. If p = 2 we assume that either k =k or (M, p)
has no integral Newton polygon slopes. Let n, € N U {0} U {oo} be such
that the number of W (k)-valued points z € N(W (k)) which lift y and whose
attached Shimura filtered F-crystals (M, F', o, G) are the Uni-canonical lift
of (M, ¢, @), is precisely Ny.

Then we have n, € N. If p > 3 or if p =2 and (M, ) has no integral
Newton polygon slopes, then n, = 1 and the resulting W (k)-valued point
z € N(W(k)) is the unique W (k)-valued point zy € N (W (k)) that lifts y
and such that the p-divisible group D, of z}(A) is a direct sum of p-divisible
groups over W (k) whose special fibres have only one Newton polygon slope;
if moreover k = k, then the p-divisible group D, of z*(A) is cyclic.

1.6.3. Theorem. We assume that k = F and that the W (k)-valued point
2z € NW(k)) is such that (M, F' ¢, Q) is a Uni-canonical lift. We have
the following four properties:

(a) Then A = z*(A) has complex multiplication.

(b) Let ep be an endomorphism of Ay wh~ose crystalline realization
cr € Endyy iy (M) is an endomorphism of (M, ¢, G). If p = 2 we assume that
either cg has a zero image in Endyy ) (M/4M) or (M, ) has no integral

Newton polygon slopes. Then ep lifts to an endomorphism of A.

(c) Let ko be a finite field. Let flko be an abelian variety over kg such
that Ap is Ay = y*(A). Let I € End(Ayp) be the extension to F of the
Frobenius endomorphism of flko. Let 2y : SpecV — N be a lift of y, where
V' is a finite, discrete valuation ring extension of W(F). Let s € N U {0}
and t € N. We assume that the endomorphism p°II' of Ap = y*(A) lifts to
an endomorphism of the abelian scheme zj(.A) over V.

If the condition W for zy (to be defined in Subsection 6.5.5) holds,
then the abelian scheme zi(A) has complex multiplication. Condition W for
2o holds if V.= W(F) (therefore, if V.= W(F), then z{(A) has complex
multiplication).

(d) Referring to (c), if moreover V.= W(F) (resp. V.= W(F), p = 2,
and s = 0), then zy is a Uni-canonical lift (resp. is the unique W (k)-valued
point z1 € N (W (k)) which lifts y and for which the p-divisible group D, of
21 (A) is cyclic).

1.6.4. Definitions. We call every point y € N(k) as in Theorem 1.6.2 as
a Uni-ordinary point (of either Ny or N). We call every W (k)-valued
point z € N (W (k)) as in Theorem 1.6.2 as a Uni-canonical lift (of either
y € N(k) or N)). If moreover y € O(k) C N (k), then we also refer to y as a
Sh-ordinary point (of either Ny, or M) and to z as a Sh-canonical lift (of
either y € O(k) or V). We also refer to O as the Sh-ordinary locus of Ny,
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1.6.5. Remark. The simplest standard Hodge situations for which there
exist Uni-ordinary points which are not Sh-ordinary points involve Hilbert—
Blumenthal varieties of dimension at least 3 (see Section 7.5).

1.6.6. On Jy. We can have Jy > 2 only if there exists a simple factor (Gq, X)
of (Gad, X2d) that is either of Ay type with £ > 2 or of D? type with £ > 4
(see Subsection 3.4.7 and Corollary 3.6.3 for an abstract version of this; see
also the property 9.5.2 (1)). In particular, we always have Jy = 1 if the group
Gad is non-trivial and all simple factors of (Gad, X2y are of By (£ > 1), Cy
(¢ > 3), or D} (¢ > 4) type. If the group Gad is simple (thus we have
Gq = G and if (G, X*?) is of Ay type with £ > 2 (resp. of D}’ type
with ¢ > 4), then one can check that regardless of what the prime v is, we
have Jg € [1,{]z (resp. Jo € {1,2}); in addition, we have plenty of situations
in which Jy is an arbitrary number in [1, {]z (resp. in {1,2}).

1.6.7. On Condition W. Condition W for 2y : Spec V' — N as in statement
1.6.3 (c) pertains to certain Bruhat decompositions (see Subsection 6.5.5)
and it is easy to see that it is also a necessary condition in order that
the abelian scheme zj(.A) over V' of the statement 1.6.3 (c) has complex
multiplication. Roughly speaking, the condition W for zp holds if there
exist enough endomorphisms of (M, ¢, é) that are crystalline realizations
of endomorphisms of zj(.A). Condition W for 2y always holds if y is a Sh-

ordinary point, cf. proof of Corollary 9.6.4.

1.7. On applications

Different examples, complements, and applications of Theorems 1.6.1
to 1.6.3 are gathered in Chapters 7 to 9. We will mention here only five
such complements and applications; to state them, in this section we take
k=k.

In Section 7.2 we define Dieudonné truncations modulo positive, integral
powers of p of Shimura F-crystals attached to k-valued points of ' and we
include a modulo p variant of the last paragraph of Theorem 1.6.1 (see
Corollary 7.2.2).

In Section 8.2 we complete for p > 5 (the last step of) the proof of the
existence of integral canonical models in unramified mixed characteristic
(0,p) of Shimura varieties whose adjoints are products of simple, adjoint
Shimura varieties of some D? type with £ > 4. In other words, the Zariski
density part of Theorem 1.6.1 and the statement 1.6.3 (a) allow us to apply
[Va3, Lem. 6.8.1 and Criteria 6.8.2] for proving (see Subsection 8.2.4) the
postponed result [Va3, Thm. 6.1.2*] for these Shimura varieties.

In Sections 9.1, 9.2, and 9.4 we generalize properties 1.1 (f) to (i) to
the context of a standard Hodge situation (f, L,v). These generalizations
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are rooted on the notions of Subsection 1.3.5 and on Faltings deformation
theory of [Fa2, Sect. 7]. We detail on the generalization of the property 1.1
(h) and on complements to it.

To Co®@k = (Mo®w (k(v)) W (), po@0%, Gy (x)) we attach a commutative
formal Lie group JF; over Spf W (k) and a connected, nilpotent group scheme
Fo over Spec W (k) of nilpotent class Jy (see Sections 5.3 and 5.4). For
instance, F; is the formal Lie group of the p-divisible group D
W (k) whose filtered Dieudonné module is

W (k) over

(Lie(Ugy () Fo (Lie(Gwi)))s 00 © 0),

where Fgl (Lle(GW( ) = {z € Lle(GW DNz Qwkwy W(k) =
0 and 2(Mo®w (k) W (k) € F§ Qw oy W (k )}, we call D‘Tv(k) the positive
p-divisible group over W (k) of Cy @ k. Moreover, F3 is a modification of
the projective limit of the finite, flat group schemes proj.lim.,, o F1[p™]
over W (k) that pays attention to the Lie structure of Lie(UOJTW(k)). We
view Fi (resp. F2) as the étale (resp. as the crystalline) possible way to
define or to look at the formal deformation space of Cy ® k. We have
Fy = proj.lim.,, o F1 [p™] if and only if Uy is commutative. See Examples
5.2.7 to 5.2.10 and the property 9.5.2 (b) for different examples that pertain
to the structure of D‘Tv(k) (which does depend on Jj).

Let y € O(k) € N (k). Let D, = Spf R be the formal scheme of the
completion R of the local ring of the k-valued point of Nw(k) defined by
y. See Theorem 1.6.2 for n, € N. One expects that: (i) D, has n, natural
structures of a formal Lie group isomorphic to F; and (ii) there exist formal
closed subschemes of D, which have n, natural structures of a nilpotent,
finite, flat formal group scheme associated naturally to F» and to a fixed
m € N. Theorem 9.4 proves such expectations in the so called commutative
case when Jg < 1 (i.e., when Uy is commutative) and in Section 9.8 we deal
with some specific properties of the case Jg > 2.

For simplicity, in this and the next paragraph we will refer only to
the commutative case; thus we have Jy < 1. If p > 3, let z € N(W(k))
be the Sh-canonical lift of y. If p = 2, then we choose a Sh-canonical lift
z € N(W(k)) of y (cf. Theorem 1.6.2). Then D, has a unique canonical
formal Lie group structure defined by the following two properties: (i) the
origin is defined by z, and (ii) the addition of two Spf W (k)-valued points of
D, is defined as in Subsection 1.2.6 via sums of lifts. If p = 2, then we have
Ny = 2m0() | where mq(1) is the multiplicity of the Newton polygon slope 1
of (Lie(G?,{,i(k(v)))[%], ©o) (see Proposition 9.5.1). Also if p = 2, then the n,
formal Lie group structures on D, that correspond to the n, possible choices
of z, differ only by translations through 2-torsion Spf W (k)-valued points
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(see property 9.5.2 (d)). For p = 2, the methods used in this monograph
can not show that we can always choose z such that the p-divisible group
D, of z*(A) is cyclic (see [Val2] for a proof of this); thus, if n, > 1, in this
monograph we can not single out in general any such 2-torsion Spf W (k)-
valued point and this explains why we mention everywhere n, canonical
structures.

See Proposition 9.6.1 and Definition 9.6.2 for the Spf V-valued points
version of sums of lifts and see Corollary 9.6.5 and Remarks 9.6.6 for Spf V-
valued torsion points; here V' is a finite, discrete valuation ring extension
of W(k). See Subsection 5.4.1 and Proposition 9.7.1 for different functorial
aspects of the formal Lie groups F; and of the mentioned canonical for-
mal Lie group structures on D,. Let v®d be the prime of the reflex field
E(Gad,Xad) of (Gad,Xad) divided by v. If the residue field k(v®?) of v*d is
F,, then up to Spf W (k)-valued points of order two (they can exist only if
p = 2), all the canonical formal Lie group structures on D, coincide and
Fi1 is a formal torus (see property 9.5.2 (a)); this result for the case when
k(v) = k(v*!) = F, was first obtained in [No.

1.8. Extra literature

The F'SHW maps were introduced in [Val, Subsubsect. 5.5.4] following
a suggestion of Faltings and this explains our terminology. They are the
adjoint Lie analogues of truncated Barsotti-Tate groups of level 1 over
k, cf. Claim of Subsection 1.2.3, the statement 1.4.3 (b), etc. To our
knowledge, [Val, Subsect. 5.5 and 5.6] is the first place where Bruhat
decompositions and Weyl elements are used in the study of U and thus
implicitly of truncated Barsotti-Tate groups of level 1 over k (see property
(15) of Proposition 3.5.1); see also [Mol], [MW], [Va8], etc. The notion Uni-
ordinariness is a new concept. The Sh-canonical lifts were first mentioned
in [Va3, Subsects. 1.6 and 1.6.2]; previously to [Va3,4], they were used only
either for the case of ordinary p-divisible groups or for cases pertaining to
H? crystalline realizations of hyperkihler varieties (like K3 surfaces). In the
generality of Theorem 1.6.2, for p > 5 they were introduced in the first
version [Va2] of this monograph (for p > 2 see also [Va4]). See Remark 4.2.2
for a link between Theorem 1.4.1 and [RR]. See also [Va6, Props. 4.3.1 and
4.3.2] for general ordinary p-divisible objects and their canonical lifts.

The Shimura F-crystal Cy was introduced in [Val, Subsect. 5.3 g)] (see
also [RR, Thm. 4.2] for a general abstract version of it). For Siegel modular
varieties the Zariski density part of Theorem 1.6.1 was checked previously
in [Kob], [NOJ, [FC], [Val], [Wel], [Oo0l,2], etc. All these references used
different methods. Under slight restrictions (that were not required and are
eliminated here), the Zariski density part of Theorem 1.6.1 was obtained
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in [Val, Thm. 5.1]. Loc. cit. is correct only when Jy < 2, as it does
not make a distinction between PJ (p)’s and P (p)’s parabolic subgroup
schemes as Example 1.4.5 does; but the modifications required to eliminate
this restriction involve only a trivial induction (cf. also Remark 1.4.6). In
[Wel] a variant of the Zariski density part of Theorem 1.6.1 is obtained for
standard PEL situations: it defines O via 1.6.1 (b) and for p = 2 it deals
only with standard moduli PEL situations. Paper [We2] uses a variant of
1.6.1 (c) (that pertains to truncated Barsotti-Tate groups of level 1), in
order to refine [Wel] for p > 3 and for the so call C case of moduli standard
PEL situations. Positive p-divisible groups over W (k) like DIJ/“V(k) and the
nilpotent class Jy were introduced in [Vad] (see also [Val0, Sect. 4]).

We (resp. B. Moonen) reported first on Theorem 1.6.1 and [Val,2] (resp.
on [Val, Sect. 5]) in Durham (resp. in Miinster) July (resp. April) 1996.
The paper [Mo2] obtains some results analogous to ours for standard PEL
situations with p > 2 or for standard moduli PEL situations with p = 2.

1.9. Our main motivation

The generalized Serre—Tate theories of Sections 1.4 and 1.6 will play for
Shimura varieties the same role played by the classical Serre—Tate theory
for Siegel modular varieties and for p-divisible groups. For instance, the
generalizations of many previous works centered on ordinariness (like [Del],
[FC, Ch. VII, Sect. 4], [No], etc.) are in the immediate reach. But our five
main reasons to develop these two theories are the following ones.

(a) To use them in connection to the combinatorial conjecture of
Langlands—Rapoport that describes the set N(F) together with the natural
actions on it of Gq(A;p )) and of the Frobenius automorphism of F whose
fixed field is k(v) (see [LR], [Mil], and [Pf]). This conjecture is a key
ingredient toward the understanding of the zeta functions of quotients of
finite type of NE(GQ,X) and of different trace functions that pertain to Q;-
local systems on smooth quotients of N (see [LR], [Ko2|, and [Mil]; here
Il € N\ {p} is a prime). Not to make this monograph too long, we only
list here its parts that are related to the conjecture (see already [Val3]).
Subsections 1.6.3 (a), 4.3.1 (b), 6.2.8, 7.4.1, 8.1, 9.6.5, and 9.6.6 form all
that one requires to prove this conjecture for the subset O(F) of N (F) (i.e.,
generically); this will generalize [Del] and the analogous generic parts of
[Zi1] and [Ko2].

(b) In [Val2] we use them to prove that for p > 2 every potential
standard Hodge situation is a standard Hodge situation.

(c) To provide intrinsic methods that would allow to extend Theorems
1.6.1 to 1.6.3 as well as (a) and (b) to all integral canonical models of
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Shimura varieties of preabelian type (a Shimura variety is said to be of
preabelian type if its adjoint Shimura variety is isomorphic to the adjoint
Shimura variety of a Shimura variety of Hodge type).

(d) To apply Section 1.4 to construct integral canonical models of
Shimura varieties of special type (i.e., of Shimura varieties which are not
of preabelian type and thus whose adjoint Shimura varieties have simple
factors of Dénixed, Eg, or E7 types).

(e) They extend to all types of polarized varieties endowed with Hodge
cycles whose different moduli spaces are open subvarieties of (quotients of)
Shimura varieties of preabelian type (like polarized hyperkdhler varieties; see
[An] for more examples).

1.10. More on the overall organization

In Chapter 2 we include preliminaries on reductive group schemes
and Newton polygons. In Section 3.1 we list basic properties of Hodge
cocharacters. See Section 3.2 for Theorem 3.2.4 and for a general outline
of the proofs of Theorems 1.4.1 and 3.2.4. The outline is carried out in
Sections 3.3 to 3.8. In Sections 4.1 and 4.2 we prove Theorems 1.4.2 and
1.4.3 (respectively). See Subsection 4.2.1 for the proof of Corollary 1.4.4.
In Chapter 5 we introduce formal Lie groups and nilpotent group scheme
of Sh-ordinary p-divisible objects over k. In Chapter 6 we prove Theorems
1.6.1 to 1.6.3. In Chapters 7 to 9 we include examples, complements, and
applications of Theorems 1.6.1 to 1.6.3 (see their beginnings and Sections
1.7 and 1.8).
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ment to approach the topics of Sections 1.3 to 1.6, for his deep insights,
and for the suggestion mentioned in Section 1.8. We would like to thank R.
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tion 5.1) and the fact that a deformation theory as in [Va3, Subsect. 5.4]
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a standard Hodge situation (f, L,v) (see Section 9.2 for details). We would
like to thank the referee for many valuable suggestions and comments. We
would like to thank Princeton University, FIM, ETH Ziirich, University of
California at Berkeley, University of Utah, University of Arizona, Bingham-
ton University, and IAS, Princeton for good working conditions to write
this monograph which for many years was thought as either a small part
of a comprehensive book (see [Vad]) or a paper. This research was partially
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