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Preface

Semi-classical analysis

There are a number of excellent texts available on the topic of this monograph,
among them Dimassi and Sjostrand’s “Spectral Asymptotics in the Semi-classical
Analysis” [DiSj], Zworski’s “Lectures on Semi-classical Analysis” [Zwor], Mar-
tinez’s “An introduction to Semi-classical and Microlocal Analysis ” [Mart], Di-
dier Robert’s “Autour de l’Approximation Semi-classique” [Did] and Colin de
Verdiere’s, “Méthodes Semi-classiques et Théorie Spectral”, [Col]. The focus of this
monograph, however, is an aspect of this subject which is somewhat less systemati-
cally developed in the texts cited above than it will be here: In semi-classical analysis
many of the basic results involve asymptotic expansions in which the terms can be
computed by symbolic techniques and the focus of these notes will be the “symbol
calculus” that this creates. In particular, the techniques involved in this symbolic
calculus have their origins in symplectic geometry and the first seven chapters of
this monograph will, to a large extent, be a discussion of this underlying symplectic
geometry.

Another feature which, to some extent, differentiates this monograph from
the texts above is an emphasis on the global aspects of this subject: We will
spend a considerable amount of time showing that the objects we are studying
are coordinate invariant and hence make sense on manifolds; and, in fact, we will
try, in so far as possible, to give intrinsic coordinate free descriptions of these
objects. In particular, although one can find an excellent account of the global
symbol calculus of Fourier integral operators in Hörmander’s seminal paper “Fourier
integral operators I”, the adaptation of this calculus to the semi-classical setting
with all the i’s dotted and t’s crossed is not entirely trivial, and most of chapters 6
and 7 will be devoted to this task.

This emphasis on globality will also be reflected in our choice of topics in the
later chapters of this book, for instance: wave and heat trace formulas for globally
defined semi-classical differential operators on manifolds and equivariant versions
of these results involving Lie group actions. (Also, apropos of Lie groups, we will
devote most of Chapter 12 to discussing semi-classical aspects of the representation
theory of these groups.)

We will give a more detailed description of these later chapters (and, in fact,
of the whole book) in Section 4 of this preface. However before we do so we will
attempt to describe in a few words what “semi-classical” analysis is concerned with
and what role symplectic geometry plays in this subject.

xi
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The Bohr correspondence principle

One way to think of semi-classical analysis is as an investigation of the mathematical
implications of the Bohr correspondence principle: the assertion that classical
mechanics is the limit, as � tends to zero, of quantum mechanics.1 To illustrate how
this principle works, let’s consider a physical system consisting of a single point
particle, p, of mass, m, in R

n acted on by a conservative force F = −�V , V ∈
C∞(Rn). The total energy of this system (kinetic plus potential) is given by
H(x, ξ) = 1

2m |ξ|2 +V (x), where x is the position and ξ the momentum of p, and the
motion of this system in phase space is described by the Hamilton–Jacobi equations

dx

dt
=

∂H

∂ξ
(x, ξ) (1)

dξ

dt
= −∂H

∂x
(x, ξ)

The quantum mechanical description of this system on the other hand is given by
the Schrödinger equation

ih
∂

∂t
ϕ = − h2

2m
Δϕ+ V ϕ (2)

whose L2 normalized solution,
∫ |ϕ|2 dx = 1, gives one a probability measure

μt = |ϕ(x, t)|2 dx that describes the “probable” position of the state described
by φ at time t.

Of particular interest are the steady state solutions of (2). If we assume for
simplicity that the eigenvalues λk(�) of the Schrödinger operator are discrete and
the corresponding L2 normalized eigenfunctions are ϕk(x) then the functions,
e−i

tλk
� ϕk(x), are steady state solutions of (2) in the sense that the measures

μk = |ϕk(x, t)|2 dx are independent of t. The λk(�)’s are, by definition the energies
of these steady state solutions, and the number of states with energies lying on the
interval a < λ < b is given by

N(a, b, �) = �{a < λk(�) < b} . (3)

On the other hand a crude semi-classical method for computing this number of
states is to invoke the Heisenberg uncertainty principle

|δxiδξi| ≥ 2π� (4)

and the Pauli exclusion principle (which can be interpreted as saying that no two
of these states can occupy the same position in phase space) to conclude that the
maximum number of classical states with energies on the interval a < H < b

1Mathematicians are sometimes bothered by this formulation of the BCP since � is a fixed
constant, i.e., is (approximately) 10−27 erg secs., (a conversion factor from the natural units of
inverse seconds to the conventional unit of ergs) not a parameter that one can vary at will. However,
unlike e and π, it is a physical constant: in the world of classical physics in which quantities are
measured in ergs and secs, it is negligibly small, but in the world of subatomic physics it’s not.
Therefore the transition from quantum to semi-classical can legitimately be regarded as an “�

tends to zero” limit.
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is approximately equal to the maximal number of disjoint rectangles lying in the
region, a < H(x, ξ) < b and satisfying the volume constraint imposed by (4). For �

small the number of such rectangles is approximately(
1

2π�

)n

vol (a < H(x, ξ) < b) (5)

so as � tends to zero

(2π�)nN(a, b, �) → vol (a < H(x, ξ) < b) . (6)

We will see in Chapter 10 of this monograph that the empirical derivation of
this “Weyl law” can be made rigorous and is valid, not just for the Schrödinger
operator, but for a large class of semi-classical and classical differential operators
as well.

The symplectic category

We recall that a symplectic manifold is a pair (M,ω) where M is a 2n-dimensional
manifold and ω ∈ Ω2(M) a closed two-form satisfying ωn

p �= 0 for all p ∈M . Given a
symplectic manifold (M,ω) we will denote byM− the symplectic manifold, (M,−ω)
and given two symplectic manifolds, Mi, i = 1, 2 we will denote by M1 ×M2 the
product of these two manifolds equipped with the symplectic form

ω = (pr1)∗ω1 + (pr2)∗ω2 .

Finally, given a 2n-dimensional symplectic manifold, (M,ω), we’ll call an n-
dimensional submanifold, Λ of M Lagrangian if the inclusion map, ιΛ : Λ → M
satisfies ι∗Λω = 0, i.e. ω vanishes when restricted to Λ. Of particular importance for
us will be Lagrangian submanifolds of the product manifold, M−

1 ×M2, and these
we will call canonical relations.

With these notations in place we will define the symplectic category to be
the category whose objects are symplectic manifolds and whose morphisms are
canonical relations: i.e. given symplectic manifolds, M1 and M2, we will define a
morphism of M1 into M2 to be a canonical relation, Γ, in M−

1 ×M2. (We will use
double arrow notation, Γ : M1 � M2 for these morphisms to distinguish them from
a more conventional class of morphisms, symplectic maps.)

To make these objects and morphisms into a category we have to specify a
composition law for pairs of morphisms, Γi : Mi � Mi+1 i = 1, 2 and this we do
by the recipe

(m1,m3) ∈ Γ ⇔ (m1,m2) ∈ Γ1 and (m2,m3) ∈ Γ2 (7)

for some m2 ∈ M2. Unfortunately the “Γ” defined by this recipe is not always a
canonical relation (or even a manifold) but it is if one imposes some transversality
conditions on Γ1 and Γ2 which we’ll spell out in detail in Chapter 4.

The fundamental notion in our approach to semi-classical analysis is a “quan-
tization operation” for canonical relations. We’re not yet in position to discuss
this quantization operation in general. (This will be the topic of Chapters 8–11
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of this monograph.) But we’ll briefly discuss an important special case: Let X be
a manifold and let M = T ∗X be the cotangent bundle of X equipped with its
standard symplectic form (the two-form, ω, which, in standard cotangent coordi-
nates, is given by,

∑
dxi ∧ dξi). A Lagrangian manifold Λ of M is horizontal if the

cotangent fibration, π(x, ξ) = x, maps Λ bijectively onto X. Assuming X is simply
connected, this condition amounts to the condition

Λ = Λϕ (8)

where ϕ is a real-valued C∞ function on X and

Λϕ = {(x, ξ) ∈ T ∗X , ξ = dϕx} . (9)

Now let Mi = T ∗Xi, i = 1, 2 and let Γ : M1 � M2 be a canonical relation. Then

Γ� = {(x1,−ξ1, x2, ξ2) , (x1, ξ1, x2, ξ2) ∈ Γ}

is a Lagrangian submanifold of the product manifold

M1 ×M2 = T ∗(X1 ×X2)

and hence if Γ� is horizontal it is defined as above by a real-valued C∞ function
ϕ(x1, x2) on X1 × X2. We will quantize Γ by associating with it the set of linear
operators

Th : C∞
0 (X1) → C∞(X2) (10)

of the form
T�f(x2) =

∫
ei

ϕ(x1,x2)
� a(x1, x2, �)f(x1) dx1 (11)

where a(x1, x2, �) is in C∞(X1 ×X2 × R) and � is positive parameter (our stand-
in for Planck’s constant). These “semi-classical Fourier integral operators” are the
main topic of this monograph, and our goal in Chapters 8–11 will be to show
that their properties under composition, taking transposes, computing traces, etc.
are governed symbolically by symplectic properties of their corresponding canonical
relations. In fact, we will show that the symbolic calculus that describes the leading
asymptotics of these operators in the � → 0 limit can be entirely described by
constructing (as we will do in Chapter 7) an “enhanced symplectic category”
consisting of pairs (Γ, σ) where Γ is a canonical relation and σ a section of the
“pre-quantum line bundle” on Γ.

The plan of attack, part 1

Chapter 1 of this monograph will essentially be a fleshed out version of this preface.
We will show how one can construct solutions of hyperbolic partial differential
equations for short time intervals, modulo error terms of order O(�), by reducing
this problem to a problem involving solutions of the Hamilton–Jacobi equation (1).
Then, using an embryonic version of the symbol theory mentioned above we will
show that these “solutions modulo O(�)” can be converted into “solutions modulo
O(�∞)”. We will also show that this method of solving (2) breaks down when the
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solution of the associated classical equation (1) develops caustics, thus setting the
stage for the much more general approach to this problem described in Chapter 8
where methods for dealing with caustics and related complications are developed
in detail.

In Chapter 1 we will also discuss in more detail the Weyl law (6). (At this stage
we are not prepared to prove (6) in general but we will show how to prove it in two
simple illuminating special cases.)

Chapter 2 will be a short crash course in symplectic geometry in which we
will review basic definitions and theorems. Most of this material can be found in
standard references such as [AM], [Can] or [GSSyT], however the material at the
end of this section on the Lagrangian Grassmannian and Maslov theory is not so
readily accessible and for this reason we’ve treated it in more detail.

In Chapter 3 we will, as preparation for our “categorical” approach to symplectic
geometry, discuss some prototypical examples of categories. The category of finite
sets and relations, and the linear symplectic category (in which the objects are
symplectic vector spaces and the morphisms are linear canonical relations). The first
of these examples are mainly introduced for the propose of illustrating categorical
concepts; however the second example will play an essential role in what follows.
In particular, the fact that the linear symplectic category is a true category: that
the composition of linear canonical relations is always well defined, will be a key
ingredient in our construction of a symbol calculus for semi-classical Fourier integral
operators.

Chapter 4 will begin our account of the standard non-linear version of this
category, the symplectic “category” itself.2 Among the topics we will discuss are
composition operations, a factorization theorem of Weinstein (which asserts that
every canonical relation is the composition of an immersion and submersion),
an embedding result (which shows that the standard differential category of C∞

manifolds, and C∞ maps is a subcategory of the symplectic category) and other
examples of such subcategories. In particular, one important such subcategory is
the exact symplectic category, whose objects are pairs, (M,α) where α is a one-
form on M whose exterior derivative is symplectic. In this category the Lagrangian
submanifolds, Λ, of M will also be required to be exact, i.e. to satisfy ι∗Λα = dϕΛ
for some ϕΛ ∈ C∞(Λ). (In Chapter 8 when we associate oscillatory integrals with
Lagrangian submanifolds, Λ, of T ∗X the fixing of this ϕΛ will enable us to avoid
the presence of troublesome undefined oscillatory factors in these integrals.)

We will also describe in detail a number of examples of canonical relations
that will frequently be encountered later on. To give a brief description of some of
examples in this preface let’s denote by “pt.” the “point-object” in the symplectic
category: the unique-up-to-symplectomorphism connected symplectic manifold of
dimension zero, and regard a Lagrangian submanifold of a symplectic manifold, M ,
as being a morphism

Λ : pt. � M .

In addition given a canonical relation Γ : M1 � M2 let’s denote by Γt : M2 � M1
the transpose canonical relation; i.e. require that (m2,m1) ∈ Γt if (m1,m2) ∈ Γ.

2Many of the ideas discussed in this chapter are directly or indirectly inspired by Alan
Weinstein’s 1981 Bulletin article “Symplectic geometry”, not the least of these being the term,
“category”, for a collection of morphisms for which there are simple, easy-to-verify criteria for
composability.
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Example 1. Let X and Y be manifolds and f : X → Y a C∞ map. Then

Γf : T ∗X � T ∗Y (12)

is the canonical relation defined by

(x, ξ, y, η) ∈ Γf ⇔ y = f(x) and ξ = df∗
xη . (13)

The correspondence that associates Γf to f gives us the embedding of the differen-
tial category into the symplectic category that we mentioned above. Moreover we
will see in Chapter 8 that Γf and its transpose have natural quantizations: Γt

f as
the pull-back operation

f∗ : C∞(Y ) → C∞(X) (14)

and Γf as the transpose of this operation on distributions.

Example 2. If π : Z → X is a C∞ fibration the distributional transpose of (14)
maps C∞

0 (Z) into C∞
0 (X) and hence defines a fiber integration operation

π∗ : C∞
0 (Z) → C∞

0 (X) (15)

about which we will have more to say when we preview the “quantum” chapters of
this monograph in the next section.

Example 3. Let Z be a closed submanifold of X1×X2 and let πi be the projection
of Z onto Xi. Then by quantizing Γπ2 × Γt

π1
we obtain a class of Fourier integral

operators which play a fundamental role in integral geometry: generalized Radon
transforms.

Example 4. The identity map of T ∗X onto itself. We will show in Chapter 8 that
the entity in the quantum world that corresponds to the identity map is the algebra
of semi-classical pseudodifferential operators (about which we will have a lot more
to say below!)

Example 5. The symplectic involution

Γ : T ∗
R

n → T ∗
R

n (x, ξ) → (ξ,−x) . (16)

This is the horizontal canonical relation in (T ∗
R

n)− × T ∗
R

n associated with the
Lagrangian manifold Λϕ where ϕ ∈ C∞(Rn × R

n) is the function, ϕ(x, y) = −x · y.
If one quantizes Γ by the recipe (11) taking a(x, y, �) to be the constant function

(2π�)−n one gets the semi-classical Fourier transform

F�f(x) = (2π�)−n/2
∫
e−i x�y

� f(y) dy . (17)

(See Chapter 5, §15 and Chapter 8, §9.)
This operator will play an important role in our “local” description of the algebra

of semi-classical pseudodifferential operators when the manifold X in Example 3 is
an open subset of R

n.

Example 6. (Generating functions) Given a Lagrangian manifold, Λ ⊆ T ∗X, a
fiber bundle π : Z → X and a function ϕ ∈ C∞(Z), we will say that ϕ is a
generating function for Λ with respect to the fibration, π, if Λ is the composition
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of the relations, Λϕ : pt � T ∗Z and Γπ : T ∗Z � T ∗X. In the same spirit, if
Γ : T ∗X � T ∗Y is a canonical relation, π : Z → X × Y is a fiber bundle and
ϕ ∈ C∞(Z) we will say that ϕ is a generating function for Γ with respect to π if it
is a generating function for the associated Lagrangian manifold, Γ� in T ∗(X × Y ).
These functions will play a key role in our definition of Fourier integral operators
in Chapter 8, and in Chapter 5 we will give a detailed account of their properties.
In particular, we will show that locally every Lagrangian manifold is definable by
a generating function and we will also prove a uniqueness result which says that
locally any generating function can be obtained from any other by a sequence of
clearly defined “Hörmander moves”. We will also prove a number of functorial
properties of generating functions: e.g. show that if

Γi : T ∗Xi � T ∗Xi+1 i = 1, 2

are canonical relations and (Zi, πi, ϕi) generating data for Γi, then if Γi and Γ2
are composable, the ϕi’s are composable as well in the sense that there is a simple
procedure for constructing from the ϕi’s a generating function for Γ2 ◦ Γ1. Finally
in the last part of Chapter 5 we will investigate the question, “Do global generating
functions exist?” This question is one of the main unanswered open questions in
present-day symplectic topology; so we will not be able to say much about it;
however we will show that if one tries to construct a global generating function by
patching together local generating functions one encounters a topological obstacle:
the vanishing of a cohomology class in H1(Λ,Z). This cohomology class, the Maslov
class, puts in its appearance in this theory in other contexts as well. In particular,
the line bundle on Λ associated with the mod 4 reduction of this cohomology class
is a main ingredient in the leading symbol theory of semi-classical Fourier integral
operators.

The other main ingredient in this symbol theory is half-densities. These will
be discussed in Chapter 6, and in Chapter 7 we will show how to “enhance” the
symplectic category by replacing canonical relations by pairs, (Γ, σ) where Γ is a
canonical relation and σ a half-density on Γ, and by showing that the composition
law for canonical relations that we discussed above extends to a composition law for
these pairs. (In §7.8 we will add a further complication to this picture by replacing
the σ’s by σ ⊗m’s where m is a section of the Maslov bundle.)

The plan of attack, part 2

Section 4 was an overview of Chapters 1–7, the symplectic or “classical” half of
this monograph, We’ll turn next to the material in the next five chapters, the
application of these results to semi-classical analysis. Let (Λ, ϕΛ) be an exact
Lagrangian submanifold of T ∗X. If Λ is horizontal, i.e. of the form (8)–(9) one
can associate with Λ the space of oscillatory functions

μ ∈ Ik(X; Λ) ⇔ μ = �
ka(x, �)ei

ϕ(x)
� (18)

where a is a C∞ function on X × R and ϕΛ is the pull-back of ϕ to Λ. More
generally if Λ is defined by generating data, (Z, π, ϕ) and ϕ and ϕΛ are compatible
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in an appropriate sense (see Section 8.1) we will define the elements of Ik(X; Λ) to
be oscillatory functions of the form

μ = �
k−d/2π∗

(
a(z, �)ei

ϕ(z)
�

)
(19)

where d is the fiber dimension of Z, a(z, �) is a C∞ function on Z×R and π∗ is the
operator (15)3

More generally if (Λ, ϕΛ) is an arbitrary exact Lagrangian manifold in T ∗X
one can define Ik(X; Λ) by patching together local versions of this space. (As
we mentioned in §4, ϕΛ plays an important role in this patching process. The
compatibility of ϕΛ with local generating data avoids the presence of a lot of
undefined oscillatory factors in the elements of Ik(X; Λ) that one obtains from
this patching process.)

Some of our goals in Chapter 8 will be:

1. To show that the space Ik(X; Λ) is well-defined. (Doing so will rely heavily
on the uniqueness theorem for generating functions proved in Chapter 5).

2. To show that if LΛ is the line bundle over Λ defined in §7.8 (the tensor product
of the Maslov bundle and the half-density bundle) there is a canonical leading
symbol map

σ : Ik(X; Λ)/Ik+1(X; Λ) → C∞(LΛ) . (20)

3. To apply these results to canonical relations. In more detail, if Γ : T ∗X �
T ∗Y is a canonical relation and Γ� is, as in §3, the associated Lagrangian
submanifold of T ∗(X × Y ), then, given an element, μ, of Ik−n/2(X × Y,Γ�),
n = dimY , we can define an operator

Fμ : C∞
0 (X) → C∞(Y ) (21)

by the recipe

Fμf(y) =
∫
f(x)μ(x, y, �) dx ; (22)

and we will call this operator a semi-classical Fourier integral operator of
order k. We will also define its symbol to be the leading symbol of μ and we
will denote the space of these operators by Fk(Γ). One of our main goals in
Chapter 8 will be to show that the assignment

Γ → Fk(Γ) (23)

is a functor, i.e. to show that if Γi : T ∗Xi � T ∗Xi+1, i = 1, 2, are canonical
relations and Γ1 and Γ2 are transversally composable, then for Fi ∈ Fki(Γi),
F2F1 is in Fk1+k2 and the leading symbol of F2F1 can be computed from the

3Strictly speaking to define π∗ one needs to equip X and Z with densities, dx and dz, so as to
make sense of the pairing ∫

π∗μν dx =
∫

μπ∗ν dz .

However in §8 we will give a slightly different definition of π∗ that avoids these choices: We will let
Γπ be an enhanced canonical relation in the sense of §4.7, i.e. equipped with a 1

2 -density symbol,
and let μ and ν be 1

2 -densities. Thus in this approach Ik(X; Λ) becomes a space of half-densities.
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leading symbols of F2F1 by the composition law for symbols that we defined
in Chapter 7. (We will also prove an analogous result for cleanly composable
canonical relations.)

4. To apply these results to the identity map of T ∗X onto T ∗X. If Γ is this
identity map then Γ◦Γ = Γ and this composition is a transversal composition,
so the space of Fourier integral operators, F(Γ), is a filtered ring. This ring is
the ring of semi-classical pseudodifferential operators and we will henceforth
denote it by Ψ(X). We will show that the symbol calculus for this ring is
much simpler than the symbol calculus for arbitrary Γ; namely, we will show
that LΓ ∼= C and hence that the leading symbol of an element of Ψk/Ψk+1 is
just a C∞ function on T ∗X.

5. To observe that I(X,Λ) is a module over Ψ(X): More explicitly if Λ : pt. �
T ∗X is a Lagrangian manifold and Γ is the identity map of T ∗X onto itself,
then Γ · Λ = Λ, and this composition is transversal. Hence, for μ ∈ Ik(X; Λ)
and P ∈ Ψ�(X), Pμ ∈ Ik+�(X; Λ). We will make use of this module structure
to deal with some problems in PDE theory that we were unable to resolve in
Chapter 1, in particular, to construct solutions modO(�∞) of the Schrödinger
equation and other semi-classical differential equations in the presence of
caustics.

6. To give a concrete description of the algebra of semi-classical pseudodiffer-
ential operators for X = R

n, in particular to show that locally on R
n these

operators are of the form

�
−kPf(x) = (2π�)− n

2

∫
a(x, ξ, �)ei x�ξ

� F�f(ξ) dξ (24)

where F� is the semi-classical Fourier transform (17).

Finally one last (very important) goal of Chapter 8 will be to describe the role of
“microlocality” in semi-classical analysis. If P is the pseudodifferential operator (24)
and (x, ξ) a point in T ∗

R
n we will say that P vanishes on an open neighborhood,

U , of (x, ξ) if the function a(x, ξ, �) vanishes to infinite order in � on this open
neighborhood. We will show that this definition is coordinate independent and
hence that one can make sense of the notion “P = 0 on U” for X an arbitrary
manifold, P an element of Ψ(X) and U an open subset of T ∗X. Moreover, from
this notion one gets a number of useful related notions. For instance, for an open set,
U , in T ∗X one can define the ring of pseudodifferential operators, Ψ(U), to be the
quotient of Ψ(X) by the ideal of operators which vanish on U , and one can define
the microsupport of an operator, P ∈ Ψ(X) by decreeing that (x, ξ) �∈ Supp(P ) if
P vanishes on a neighborhood of (x, ξ). Moreover, owing to the fact that I(X,Λ)
is a module over Ψ(X) one can define analogous notions for this module. (We refer
to §6 of Chapter 8 for details.) In particular these “microlocalizations” of the basic
objects in semi-classical analysis convert this into a subject which essentially lives
on T ∗X rather than X.

One last word about microlocality: In definition (19) we have been a bit
sloppy in not specifying conditions on the support of a(z, �). For this expression
to be well-defined we clearly have to assume that for every p ∈ X, a(z, �) is
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compactly supported on the fiber above p, or at least, in lieu of this, impose
some decay-at-infinity conditions on the restriction of a to these fibers. However
sometimes one can get around such assumptions using microlocal cutoffs, i.e. define
generalized elements, μ of Ik(X; Λ) by requiring that such an element satisfy
Pμ ∈ Ik(X; Λ) for every compactly supported cutoff “function”, P ∈ Ψ(X).
In Chapter 9 we will apply this idea to the ring of pseudodifferential operators
itself. First, however, as an illustration of this idea, we will show that the algebra
of classical pseudodifferential operators: operators with polyhomogeneous symbols
(but with no � dependence) has such a characterization. Namely let Ψ0(X) be the
ring of semi-classical pseudodifferential operators having compact micro-support
and let Ψ00(X) be the elements of this ring for which the micro-support does not
intersect the zero section. We will prove

Theorem 1. A linear operator, A : C∞
0 (X) → C−∞(X), with distributional kernel

is a classical pseudodifferential operator with polyhomogeneous symbol if and only
if AP ∈ Ψ00(X) for all P ∈ Ψ00(X), and is a differential operator if AP ∈ Ψ0(X)
for all P ∈ Ψ0(X).

We will then generalize this to the semi-classical setting by showing that semi-
classical pseudodifferential operators with polyhomogeneous symbols are character-
ized by the properties:

(i) A� depends smoothly on �.

(ii) For fixed �, A� is polyhomogeneous.

(iii) A�P ∈ Ψ0(X) for all P ∈ Ψ0(X).

The second half of Chapter 9 will be devoted to discussing the symbol calculus
for this class of operators, for the most part focusing on operators on R

n of the
form (24).4

If a(x, ξ, �) is polyhomogeneous of degree less than n in ξ then the Schwartz
kernel of P can be written in the form

�
k(2π�)−n

∫
a(x, ξ, �)ei

(x−y)·ξ
� dξ ; (25)

however, we will show that these are several alternative expressions for (25):
a(x, ξ, �) can be replaced by a function of the form a(y, ξ, �), a function of the
form a(x+y

2 , ξ, �) or a function of the form a(x, y, ξ, �) and we will show how all
these symbols are related and derive formulas for the symbols of products of these
operators. Then in the last section of Chapter 9 we will show that there is a local
description in coordinates for the space I(X; Λ) similar to (25) and give a concrete
description in coordinates of the module structure of I(X; Λ) as a module over
Ψ(X).

In Chapter 10 we will study the functional calculus associated with polyhomo-
geneous semi-classical pseudodifferential operators. We recall that if H is a Hilbert

4We will, however, show that our results are valid under change of variables and hence make
sense on manifolds.
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space and A a densely defined self-adjoint operator on H then by Stone’s theorem
A generates a one-parameter group of unitary operators

U(t) = eitA

and one can make use of this fact to define functions of A by the recipe

f(A) =
1
2π

∫
f̂(t)eitA dt

for f a compactly supported continuous function and f̂ its Fourier transform.
We will give an account of these results in Chapter 13 and also describe an
adaptation of this theory to the setting of semi-classical pseudodifferential operators
by Dimassi–Sjostrand. In Chapter 10, however, we will mainly be concerned with
the “mod O(�−∞)” version of this functional calculus. More explicitly we will show
that if P : C∞(Rn) → C∞(Rn) is a self-adjoint elliptic pseudodifferential operator
of order zero with leading symbol P0(x, ξ) and f : R → R a compactly supported
C∞ function then f(P ) is a semi-classical pseudodifferential operator with Schwartz
kernel

(2π�)−n

∫
bf (x, ξ, �)ei

(x−y)�ξ
� dξ (26)

where bf (x, ξ, �) admits an asymptotic expansion

∑
�

k
∑
�≤2k

bk,�(x, ξ)
(

1
i

d

ds

)�

f(P0(x, ξ)) (27)

in which the bk,�’s are explicitly computable, and from this we will deduce the
following generalization of the Weyl law that we described in Section 2 above.

Theorem 2. Suppose that for some interval, [a, b], the set P−1
0 ([a, b]) is compact.

Then the spectrum of P intersected with (a, b) consists of a finite number of discrete
eigenvalues, λk(�), q ≤ k ≤ N(�) where

N(�) ∼ (2π�)−n volume (P−1
0 ([a, b])) . (28)

We will in fact derive this result from a much sharper result. Namely the formula
(27) gives us for f ∈ C∞

0 (R) an asymptotic expansion for

Trace f(P ) =
∫
bf (x, ξ, � dx dξ (29)

in powers of � and hence an asymptotic expansion of the sum∑
f(λk(�)) 1 ≤ k ≤ N(�) . (30)

The second half of Chapter 10 will basically be concerned with applications of
this result. For P the Schrödinger operator we will compute the first few terms in
this expansion in terms of the Schrödinger potential, V , and will prove in dimension
one an inverse result of Colin de Verdiere which shows that modulo weak asymmetry
assumptions on V , V is spectrally determined. We will also show in dimension one
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that there is a simple formula linking the spectral measure μ(f) = trace f(P ) and
the quantum Birkhoff canonical form of P .

The results above are concerned with semi-classical pseudodifferential operators
on R

n; however we will show at the end of Chapter 10 that they can easily be
generalized to manifolds and will show that these generalizations are closely related
to classical heat trace results for elliptic differential operators on manifolds.

In Chapter 11 we will discuss results similar to these for Fourier integral
operators. A succinct table of contents for Chapter 11 (which we won’t bother
to reproduce here) can be found at the very beginning of the chapter. However,
in fifty words or less the main goal of the chapter will be to compute the trace of
a Fourier integral operator F : C∞(X) → C∞(X) whose canonical relation is the
graph of a symplectomorphism, f : T ∗X → T ∗X, and to apply this result to the
wave trace

trace exp i
tP

�
(31)

where P is an elliptic zeroth order semi-classical pseudodifferential operator.
The last chapter in this semi-classical segment of the monograph, Chapter 12,

has to do with a topic that, as fas as we know, has not been much investigated
in the mathematical literature (at least not from the semi-classical perspective).
Up to this point our objects of study have been exact Lagrangian manifolds and
exact canonical relations, but these belong to a slightly larger class of Lagrangian
manifolds and canonical relations: If (M,α) is an exact symplectic manifold and
Λ ⊆ M a Lagrangian submanifold we will say that Λ is integral if there exists a
function f : Λ → S1 such that

ι∗Λα =
1√−1

df

f
. (32)

To quantize Lagrangian manifolds of this type we will be forced to impose
a quantization condition on � itself: to require that �

−1 tend to infinity in Z
+

rather than in R
+. An example which illustrates why this constraint is needed is

the Lagrangian manifold, Λϕ = graph dϕ in the cotangent bundle of the n-torus,
R

n/2πZ
n where ϕ(x) =

∑
kixi, k ∈ Z

n. As a function on the torus this function is
multi-valued, but dϕ and Λϕ are well-defined, and

ι∗Λα = π∗
Λ
df

f

where πΛ is the projection of Λ onto the torus and f = eiϕ, so Λϕ is integral.
Suppose now that we quantize Λϕ by the recipe (18), i.e. by associating to it

oscillatory functions of the form

a(x, �)ei
ϕ(x)

� . (33)

It’s clear that for these expressions to be well-defined we have to impose the
constraint, �

−1 ∈ Z+ on �.
In Chapter 12 we will discuss a number of interesting results having to do

with quantization in this integral category. The most interesting perhaps is some
“observational mathematics” concerning the classical character formulas of Weyl,
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Kirillov and Gross–Kostant–Ramond–Sternberg for representations of Lie groups:
Let G be a compact simply-connected semi-simple Lie group and γα the irreducible
representation of G with highest weight, α. By semi-classical techniques adapted to
this integral symplectic category, one can compute symbolically the leading order
asymptotics of the character, χn = trace γnα as n tends to infinity. However,
somewhat surprisingly, the asymptotic answer is, in fact, the exact answer (and
in particular valid for n = 1).

The plan of attack, part 3

The last four chapters of this monograph are basically appendices and have to do
with results that were cited (but not proved or not explained in detail) in the earlier
chapters. Most of these results are fairly standard and are well-exposed in other
texts, so we haven’t, in all instances, supplied detailed proofs. (In the instances
where we’ve failed to do so, however, we’ve attempted to give some sense of how
the proofs go.) We’ve also, to provide some perspective on these results, discussed
a number of their applications besides those specifically alluded to in the text.

1. Chapter 13:

Here we gather various facts from functional analysis that we use, or which
motivate our constructions in Chapter 10. All the material we present here
is standard, and is available in excellent modern texts such as Davies, Reed-
Simon, Hislop-Sigal, Schecter, and in the classical text by Yosida. Our problem
is that the results we gather here are scattered among these texts. So we had
to steer a course between giving a complete and self-contained presentation
of this material (which would involve writing a whole book) and giving a
bareboned listing of the results.

We also present some of the results relating semi-classical analysis to func-
tional analysis on L2 which allow us to provide the background material for
the results of Chapters 9–11. Once again the material is standard and can be
found in the texts by Dimassi-Sjöstrand, Evans-Zworski, and Martinez. And
once again we steer a course between giving a complete and self-contained
presentation of this material giving a bareboned listing of the results.

2. Chapter 14: The purpose of this chapter is to give a rapid review of the
basics of calculus of differential forms on manifolds. We will give two proofs
of Cartan’s formula for the Lie derivative of a differential form: the first of
an algebraic nature and then a more general geometric formulation with a
“functorial” proof that we learned from Bott. We then apply this formula to
the “Moser trick” and give several applications of this method. (This Moser
trick is, incidentally, the basic ingredient in the proof of the main results of
Chapter 5.)

(In earlier versions and in some publications we have referred to “Cartan’s
formula” as “Weil’s formula”. But it has been pointed out to us that this
formula appears on page 84 (equation (5)) of Élie Cartan’s 1922 book Leçons
sur les invariants intégraux.)
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3. Chapter 15: The topic of this chapter is the lemma of stationary phase. This
lemma played a key role in the proofs of two of the main results of this
monograph: It was used in Chapter 8 to show that the quantization functor
that associates F.I.O’s to canonical relations is well-defined and in chapter
11 to compute the traces of these operators. In this chapter we will prove
the standard version of stationary phase (for oscillatory integrals whose phase
functions are just quadratic forms) and also “manifold” versions for oscillatory
integrals whose phase functions are Morse or Bott-Morse. In addition we’ve
included, for edificational purposes, a couple corollaries of stationary phase
that are not explicitly used earlier on: the Van der Corput theorem (for
estimating the number of lattice points contained in a convex region of n-
space) and the Fresnel version in geometric optics of Huygens’s principle.

4. In Chapter 15 we come back to the Weyl calculus of semi-classical pseudodif-
ferential operators that we developed in Chapter 9 and describe another way
of looking at it (also due to Hermann Weyl.) This approach involves the rep-
resentation theory of the Heisenberg group and is based upon the following
fundamental result in the representation theory of locally compact topolog-
ical groups: If one is given a unitary representation of a group of this type,
this representation extends to a representation of the convolution algebra of
compactly supported continuous functions on the group. Applying this obser-
vation to the Heisenberg group and the irreducible representation, ρ�, with
“Planck’s constant �”, one gets an algebra of operators on L2(Rn) which is
canonically isomorphic to the Weyl algebra of Chapter 9, and we show that
this way of looking at the Weyl algebra makes a lot of its properties much
more transparent.
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Plancks’s constant, 406
second resolvent identity, 343
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173
Weyl integration theorem , 320

almost analytic extension, 253
almost holomorphic extensions, 376

billiard map, 131
Bohr–Sommerfeld condition, 305
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canonical one form on the cotangent

bundle, 3
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canonical relation of a map, 71
canonical relation, linear, 55
Cartan identity, 4
Cartan’s formula, 384, 385

Cartan’s formula, general version,
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circle conjecture, 412
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relations, 65
clean generating function, 99
clean intersection, 64, 65
closed linear transformations, 339
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composition and the sum of
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conormal bundle, 70
consistent Hermitian structures, 26
contravariant functor, 48
covariant functor, 48

Darboux theorem, 33, 36
Darboux-Weinstein theorems, 33
de Broglie’s formula, 405
densities of order one, 148
densities on manifolds, 145
densities, elementary properties of,

139
densities, linear algebra of, 137
densities, pullback and pushforward,

141
density of order α, 138, 145
density of states, 19
diagonal, 50
differential operators on manifolds,
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differential operators on manifolds,
on sections of vector bundles,
17

divisor problem, 412
Donnelly’s theorem, 292
Dynkin-Helffer-Sjöstrand formula,

254, 346, 371, 376

eikonal, 2
eikonal equation, 2
eikonal equation, local solution of, 7
Einstein’s energy frequency formula,

405
enhancing a fibration, 157
enhancing an immersion, 156
enhancing the symplectic “category”,

151
envelope, 74
Euler vector field, 103
Euler’s constant, 413
Euler’s theorem, 103
exact Lagrangian submanifolds, 91
exact square, 55
exact symplectic category, 93
exact symplectic manifolds, 91
exterior differential cacullus, 380

fiber product, 55
FinRel, 50
first resolvent identity, 341
formal theory of symbols, 235
functional calculus and the spectral

theorem, 360
functor, 48

Gaussian integrals, 395
generating function, 43, 99
generating function of a composition,

106
generating function, existence of, 113
generating function, local description,

100
generating function, reduced, 112
geodesically convex, 103
graph of a linear transformation, 339
group velocity, 405
Gutzwiller formula, 286

Hörmander moves, 117
Hörmander-Morse lemma, 117, 118
half-densities, 9
Hamiltonian vector field, 4, 32
Hamiltonian vector fields, 4
Heisenberg algebra, 423
Heisenberg group, 423
Hille Yosida theorem, 356
horizontal Lagrangian submanifold, 7
hyperbolic differential operator, 3
hyperbolicity, 3

indicator function, 410
integral symplectic category, 94, 295
involutive functor, 49
involutory functor, 49
isotropic embedding theorem, 36
isotropic submanifold, 5
isotropic subspace, 25

Kantorovitz’s non-commutative
Taylor’s formula, 371, 372

kinetic energy, 103
Kirillov character formula, 322

Lagrangian complements, 27
Lagrangian Grassmannian, 38
Lagrangian submanifolds, 6
Lagrangian subspaces, existence of,

26
Lefschetz symplectic linear

transformations, 142
Legendre transform, 117
length spectrum, 284
linear canonical relation, image of, 56
linear canonical relation, kernel of,

56
linear symplectic category, 55
local symbol calculus, 196

mapping torus, 282
Maslov bundle, 125
Maslov cocycle, 126
Maslov enhanced symplectic

“category”, 165
Maslov line bundle, 42
mass energy formula, 405
microlocality, 192
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moment Lagrangian, 77
moment map, 76
moment map, classical, 76
moment map, in general, 77
morphism, 49
Morse lemma, 393
Moser trick, 391
moves on generating functions, 125

natural transformation, 49
normal form for a symplectic vector

space, 26

period spectrum of a symplectomor-
phism, 280, 281

Poisson summation formula, 415
polyhomogeneous pseudo-differential

operators, 219
principal series representations, 149
principal symbol, 2, 17
pseudolocality, 227
pull-back of a density under a

diffeomorphism, 147
pullback of densities, 141
pushforward of densities, 141
pushforward of Lagrangian

submanifolds of the cotangent
bundle, 72

quadratic generating functions, 134

recovering the potential well, 263
reduced generating function, 112
reductions are coisotropics., 60
relation, 50
resolvent, 340
resolvent set, 340

Schrödinger operators with magnetic
fields, 265

self-adjoint operators , 344
Semi-classical differential operators,

18
semi-classical Fourier integral

operators, 171, 273
semi-classical Fourier integral

operators, composition of,
172, 179, 189

semi-classical Fourier integral
operators, symbol of, 175

semi-classical pseudo-differential
operators, 217

spectral invariants, 260
spectral theorem, 360
spectral theorem, multiplicative

version, 362
spectrum, 340
stationary phase, 275, 402, 414
stationary phase, abstract version,

212
Stone’s theorem, 349
Stone–von-Neumann theorem, 424
strongly convex, 414
sub-principal symbol, 12
sub-principal symbol of a differential

operator on half-densities, 18
superalgebras, 379
support of a density, 146
symbol calculus, 229
symbol calculus, left, 196
symbol calculus, right, 196
symbol calculus, Weyl, 196
symbol, functoriality of, 176
symmetric operators, 345
symplectic form, 4
symplectic manifold, 4, 32
symplectic reduction, 307
symplectic subspace, 25
symplectic vector field, 32
symplectic vector space, 25
symplectomorphism, 4, 32

total symbol, 11
transport equation, first order , 9
transport equations, 8
transport operator, 16
transport operator, local expression,

13
transport operator, semi-classical,

192
transpose, 12, 54
transpose of a differential operator

on half-densities, 18
transverse composition of canonical

relations, 66
transverse generating function, 99
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van der Corput’s theorem, 412, 415
volumes of spheres and balls, 22

wave packet, 405
Weyl character formula, 316
Weyl ordering, 421
Weyl transform, 419, 420
Weyl transform, group theoretical,

427

Weyl transform, semi-classical, 421,
428, 429

Weyl transforms with symbols in L2,
431

Weyl’s law, 18
Weyl’s law for the harmonic

oscillator, 22


