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Preface

Gavril Farkas and Ian Morrison

The title of these volumes might lead unwary readers to expect an encyclopedic
survey for experts in the study of moduli problems in algebraic geometry. What they
will discover is rather different. Our aims here are, first, to clarify the audience that
we hope the Handbook will serve and the approach it does takes to its subject and,
second, to thank all those who have assisted us in helping it realize these aims.

To begin with, a bit of history. The idea for a Handbook of Moduli originated
in a discussion between David Mumford and Lizhen Ji at Michigan in 2006. Lizhen
and David produced a draft table of contents that was circulated at the Symposium
marking David’s retirement from Brown in 2007. The Handbook was originally to
have been edited by Ching-Li Chai and Amnon Neeman, but the demands of their
work with Takahiro Shiota as editors of the second volume of Mumford’s Collected
Papers took priority and, at their urging, we agreed to take over editorship in the
spring of 2009.

We quickly reached the conclusion that what was needed for many topics was
not a discussion of the latest results aimed at specialists, but a survey aimed at a
broad community of producers (and even some consumers from cognate areas) of
algebraic geometry, most of whom had little prior familiarity with the area. Our
goal became a Handbook that would introduce the techniques, examples and results
essential to each topic, and say enough about recent developments to prepare the
reader to tackle the primary literature in the area. We particularly sought to elicit
contributions that illustrated “secret handshakes”, yogas and heuristics that experts
use privately to guide intuition or simplify calculation but that are replaced by more
formal arguments, or simply do not appear, in articles aimed at other specialists.

For many topics, the Handbook succeeds much better than we dared to hope.
The credit is due entirely to the hard work of the Handbook’s many authors in
producing articles that conformed to the goals we had set. Again and again, we were
delighted to find that authors, instead of taking the easy course of cutting and pasting
from earlier surveys and primary references, had made the substantially greater effort
to write the original treatments needed to bridge gaps in the literature and make
important problems accessible to a wide audience for the first time.

We expect that they will reap a just reward and that their articles will be widely
read and referenced. Here we want to offer them not only our sincerest thanks,
but also those of the Handbook’s readers, for their exceptional generosity. Many
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Handbook articles were also improved by extensive and thoughtful referees’ reports.
We are grateful for all work that the referees did to improve the Handbook and take
this opportunity to thank them collectively on behalf of the contributors.

We must, however, disclaim that the Handbook’s coverage is often incomplete,
in extreme cases, non-existent. The blame for these gaps is mostly ours. When we
solicited contributions to the Handbook, each invitation was accompanied by a
suggested topic, and we selected contributors who we thought would be able to cover
their topics in the spirit discussed above. The results reflect both our knowledge and
taste—of topics and of experts in them—and also, in some cases, our ignorance.

In some areas, we found it easy to produce candidate contributor–topic pairs,
and to recruit the contributors we had identified. The Handbook’s discussion of, for
example, moduli spaces of curves is, therefore, particularly complete—some will say,
not without a certain justice, excessive.

In other areas, we had more difficulty both in identifying and in enlisting
candidates. A few of the more obvious gaps arose when authors who had accepted
our invitation backed out after it was too late to find replacements. A more deeply
felt loss—one that impacts the whole subject of moduli—was the untimely death of
Eckart Viehweg, who had been one of the first to agree to contribute.

We also omitted a few topics as a courtesy to the authors ofmonographs devoted
to them that we knew to be in preparation, others because papers treating them in
the spirit we were seeking had recently appeared, and yet others because we felt that
they were developing so rapidly that any contribution dealing with themwould have
a limited shelf-life. In hindsight, not all of these decisions were well taken.

As a result, the Handbook’s treatment of moduli has some major lacunae (mir-
ror symmetry, wall crossing formulae) and there are other topics (moduli of sheaves
and bundles) which are discussed but not in the depth that their importance merits.
We apologize to readers who may have hoped to find more about these subjects
in the Handbook, and (with Lizhen’s encouragement) we challenge experts who
feel that their areas deserve a fuller exposition to offer him proposals for additional
Handbook volumes devoted to them.

The Handbook also benefitted from the efforts of many other colleagues. Am-
non Neeman showed considerable doggedness in recruiting us to succeed him and
Ching-Li as editors. Scott Wolpert provided valuable advice on the cat-herding el-
ements of the editor’s job. Dave Bayer helped enormously in setting up the final
production process both to automate complex and error prone operations and to
prevent inconsistencies between the LATEX installations on our home systems and
those at Higher Education Press.

Brian Bianchini, International Press’ book production manager, ensured that
we had the resources we needed throughout the Handbook’s growth from the single
volume originally projected to the present three. The Advanced Mathematics series
editor, Lizhen Ji, was always ready to answer our questions, help with practical
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difficulties, and adjust his schedule for the series to adapt to changes in ours. Lip-
ing Wang and her production staff at the Higher Education Press were unfailingly
accommodating and helpful to us in resolving LATEX issues—even reTEXing several
submissions to bring them into conformity with the Handbook style—and made
every effort to ensure that the appearance of the Handbook volumes was up to the
standard of their contents.

To all of them, and to many others who provided more informal help, we here
offer our sincerest thanks.
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