Advanced Lectures in Mathematics (ALM)

ALM 1: Superstring Theory

ALM 2: Asymptotic Theory in Probability and Statistics with Applications

ALM 3: Computational Conformal Geometry

ALM 4: Variational Principles for Discrete Surfaces

ALM 6: Geometry, Analysis and Topology of Discrete Groups

ALM 7: Handbook of Geometric Analysis, No. 1

ALM 8: Recent Developments in Algebra and Related Areas

ALM 9: Automorphic Forms and the Langlands Program

ALM 10: Trends in Partial Differential Equations

ALM 11: Recent Advances in Geometric Analysis

ALM 12: Cohomology of Groups and Algebraic K-theory

ALM 13: Handbook of Geometric Analysis, No. 2

ALM 14: Handbook of Geometric Analysis, No. 3

ALM 15: An Introduction to Groups and Lattices: Finite Groups and Positive

Definite Rational Lattices

ALM 16: Transformation Groups and Moduli Spaces of Curves

ALM 17: Geometry and Analysis, No. 1

ALM 18: Geometry and Analysis, No. 2

ALM 19: Arithmetic Geometry and Automorphic Forms

ALM 20: Surveys in Geometric Analysis and Relativity

Advanced Lectures in Mathematics Volume XX

Surveys in Geometric Analysis and Relativity

edited by

Hubert L. Bray · William P. Minicozzi II

Advanced Lectures in Mathematics, Volume XX Surveys in Geometric Analysis and Relativity

Volume Editors: Hubert L. Bray, Duke University William P. Minicozzi II, Johns Hopkins University

2010 Mathematics Subject Classification. 14J15, 14J32, 30C80, 30F45, 30F60, 32G15, 35B25, 35J50, 35J60, 35K20, 35K55, 49Q05, 49Q20, 53-6, 5302, 53A10, 53C20, 53C21, 53C23, 53C24, 53C35, 53C38, 53C42, 53C43, 53C44, 53C80, 53D12, 58D27, 58E12, 58E20, 58J05, 58J32, 58J35, 58K15, 83C57, 83C99.

Copyright © 2011 by International Press, Somerville, Massachusetts, U.S.A., and by Higher Education Press, Beijing, China.

This work is published and sold in China exclusively by Higher Education Press of China.

All rights reserved. Individual readers of this publication, and non-profit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgement of the source is given. Republication, systematic copying, or mass reproduction of any material in this publication is permitted only under license from International Press. Excluded from these provisions is material in articles to which the author holds the copyright. (If the author holds copyright, notice of this will be given with the article.) In such cases, requests for permission to use or reprint should be addressed directly to the author.

ISBN: 978-1-57146-230-5

Printed in the United States of America.

15 14 13 12 11 1 2 3 4 5 6 7 8 9

ADVANCED LECTURES IN MATHEMATICS

Executive Editors

Shing-Tung Yau Harvard University

Lizhen Ji

University of Michigan, Ann Arbor

Kefeng Liu

University of California at Los Angeles

Zhejiang University Hangzhou, China

Editorial Board

Chongqing Cheng Nanjing University Nanjing, China

Zhong-Ci Shi

Institute of Computational Mathematics Chinese Academy of Sciences (CAS)

Beijing, China

Zhouping Xin

The Chinese University of Hong Kong

Hong Kong, China

Weiping Zhang Nankai University Tianjin, China

Xiping Zhu Sun Yat-sen University Guangzhou, China Tatsien Li Fudan University Shanghai, China

Zhiying Wen Tsinghua University Beijing, China

Lo Yang

Institute of Mathematics

Chinese Academy of Sciences (CAS)

Beijing, China

Xiangyu Zhou

Institute of Mathematics

Chinese Academy of Sciences (CAS)

Beijing, China

to Richard Schoen in honor of his sixtieth birthday

Preface

This volume of 23 survey articles is dedicated to Richard M. Schoen on the occasion of his 60th birthday in recognition of his many important contributions as a leading researcher in geometric analysis and general relativity. We also thank him for the equally important roles he has played as mentor, colleague, collaborator, and friend.

Rick Schoen was born on October 23, 1950 in Celina, Ohio. In 1972 he graduated summa cum laude from the University of Dayton and received an NSF Graduate Fellowship. In March 1977, Rick received his Ph.D. from Stanford University under the direction of Leon Simon and Shing-Tung Yau, and soon after received a Sloan Postdoctoral Fellowship. His early work was on minimal surfaces and harmonic maps. By the time that Rick received his Ph.D., he had already proven major results, including his 1975 curvature estimates paper with Simon and Yau.

In the late 1970's, Schoen and Yau developed new tools to study the topological implications of positive scalar curvature. This work grew out of their study of stable minimal surfaces, eventually leading to their proof of the positive mass theorem in 1979. All together, their work was impressive for the way it connected neighboring fields, first using analysis to understand geometry, and then using geometry to understand physics.

In the early 1980's, Rick published a number of fundamental papers on minimal surfaces and harmonic maps. His work on minimal surfaces includes an influential Bernstein theorem for stable minimal surfaces with Doris Fischer-Colbrie. Rick met his future wife Doris in Berkeley, where Doris received her Ph.D. in 1978. They have two children, Alan and Lucy, seen in the photographs in this book, both of whom graduated from Stanford.

Other works from the early 1980's include an extremely useful curvature estimate for stable surfaces, a uniqueness theorem for the catenoid, and a partial regularity theory for stable hypersurfaces in high dimensions with Leon Simon. In 1982, Rick and Karen Uhlenbeck proved the partial regularity of energy minimizing harmonic maps. In 1983, Rick was awarded the very prestigious MacArthur Prize Fellowship.

Rick is also very well known for his celebrated solution to the remaining cases of the Yamabe problem in 1984, this time using a theorem from physics, namely the positive mass theorem, to solve a famous problem in geometry. The resulting fundamental theorem in geometry, that every smooth Riemannian metric on a closed manifold admits a conformal metric of constant scalar curvature, had been

open since the 60's. This work was cited in 1989 when Rick received the Bocher prize of the American Mathematical Society. His work on scalar curvature at this time set the direction for the field for the next 25 years.

Rick was elected to the American Academy of Arts and Sciences in 1988 and the National Academy of Sciences in 1991. He has been a Fellow of the American Association for the Advancement of Science since 1995 and won a Guggenheim Fellowship in 1996.

Starting around 1990, Rick began two major programs. The first was to develop a theory of harmonic maps with singular targets, starting with a joint paper with Mikhail Gromov where they used harmonic maps to establish p-adic superrigidity for lattices in groups of rank one. In a series of papers, Rick and Nick Korevaar laid the foundations for a general theory of mappings to NPC spaces, established the basic existence and regularity results, and applied their theory to settle problems in a number of areas of mathematics. The second big program was a variational theory of Lagrangian submanifolds, including the existence and regularity theory, done in a series of papers with Jon Wolfson.

Over the last decade, Rick has continued to make major contributions to geometric analysis and general relativity. Among other results in general relativity, Rick has made fundamental contributions to the constraint equations (with Corvino and others) which dictate the range of possible initial conditions for a spacetime and proved theorems on the topology of higher dimensional black holes (with Galloway). In geometric analysis, he has several important results with Simon Brendle on Ricci flow, including the proof of the differentiable sphere theorem, as well as a compactness theorem for the Yamabe equation with Marcus Khuri and Fernando Marques.

Rick has written 2 books and roughly 80 papers and has solved an impressively wide variety of major problems and conjectures. He has supervised 35 students and counting, and he has hosted many postdocs. Even with his great success, Rick is still one of the hardest working people in mathematics, giving us all the distinct impression that he must love it. His impact on mathematics, both in terms of his ideas and the example he sets, continues to be tremendous.

We would like to thank all of the authors for their contributions, the publishers Lizhen Ji and Liping Wang for their help, as well as Jaigyoung Choe, Michael Eichmair, John Rawnsley, Peter Topping, and Doris Fischer-Colbrie for contributing photographs. We hope you enjoy reading the beautiful survey articles included in this volume as much as we have enjoyed helping to put it all together.

${\bf Contents}$

, , ,	
ıbert L. Bray	1
Introduction	2
•	2 9
The Compactness Conjecture	29 31 34 37 40 45
grangian Graphs	49
Longtime Existence With Lipschitz Continuous Initial Data Uniqueness and Viscosity Solutions Self-similar Solutions	49 50 52 53 57
_	59
Introduction	59 60 62 63 65
1 2 3 Reference	2 Introduction 3 A Trio of Inequalities References Int Progress on the Yamabe Problem Simon Brendle, Fernando C. Marques. 1 The Yamabe Problem 2 The Compactness Conjecture 3 Non-compactness Results in Dimension n ≥ 25 4 A Compactness Result in Dimension n ≤ 24 5 The Parabolic Yamabe Flow References. 2 Recent Progress on Mean Curvature Flow for Entire Lagrangian Graphs Jingyi Chen. 1 Introduction 2 Longtime Existence With Lipschitz Continuous Initial Data 3 Uniqueness and Viscosity Solutions 4 Self-similar Solutions References. 2 Introduction 3 Introduction 4 Self-similar Solutions 8 References 9 Introduction 9 Cone 1 Introduction 9 Cone

ii Contents

	References	72
Mini	mal Surfaces and Mean Curvature Flow	
	Tobias H. Colding, William P. Minicozzi II	7 3
	1 Introduction	73
	2 Harmonic Functions and the Heat Equation	74
	3 Energy of a Curve	78
	4 Birkhoff: A Closed Geodesic on a Two Sphere	80
	5 Curve Shortening Flow	84
	6 Minimal Surfaces	88
	7 Classification of Embedded Minimal Surfaces	96
	8 Mean Curvature Flow	112
	9 Width and mean curvature flow	117
	10 Singularities for MCF	119
	11 Smooth Compactness Theorem for Self-shrinkers 1	124
	12 The Entropy	126
	13 An Application	131
	14 Non-compact self-shrinkers	132
	References	135
Scala	r Curvature and the Einstein Constraint Equations	
Scare	_	45
		145
	1	147
		149
		167
	<u> </u>	172
	References	182
On t	ne Intrinsic Differentiability Theorem of Gromov-Schoen	
011 0	· ·	89
		189
		190
		192
	References. 2	203
Mini	mal Surface Techniques in Riemannian Geometry	
	Ailana Fraser	05
	1 Introduction	205
		206
		208
		211

~	•••
Contents	111
COHUCHUS	111

R	eferences	217
	ty and Rigidity of Extremal Surfaces in Riemannian Geometry and General Relativity	
C	Gregory J. Galloway	22 1
1 2 3 R	Minimal Hypersurfaces in Manifolds of Nonnegative Scalar Curvature	221 226 232 237
Convex	Hypersurfaces of Constant Curvature in Hyperbolic Space	
	Po Guan, Joel Spruck	241
1 2 3	Introduction	241 246
$\frac{4}{5}$	Gradient Estimates Curvature Estimates Uniqueness and Foliations eferences	250 251 254 257
	Clow in Two Dimensions ames Isenberg, Rafe Mazzeo, Natasa Sesum	25 9
1	Introduction	259
2	General Considerations	261
3	Compact Surfaces	262
4	Open Surfaces	267
5	Flows on Incomplete Surfaces	274
К	eferences	278
Doubli	ng and Desingularization Constructions for Minimal Surface	s
	Tikolaos Kapouleas	281
1	Introduction	281
2	Doubling Constructions	288
3	Desingularization Constructions	296
4	Minimal Surfaces in the Round Three-Sphere	299
5	The Building Blocks for the Desingularization Construction	304
6	An Initial Surface for the Desingularization Construction	309
7	The Family of Initial Surfaces for the	
	Desingularization Construction	312
8	Main Estimates and Outline of the Proof	317
R	eferences	322

iv Contents

	$tric \ Properties \ of \ Lagrangians$	327
1 2 3 4 5 Res	Introduction A Short Survey Definitions and Properties Singularities and Geometric Measure Theory Gluing and Singular Perturbation ferences	327 328 332 334 336 338
	re of Complete Manifolds with Positive Spectrum ter Li	343
1 2 3 4 5 6 Res	Introduction	343 344 348 351 354 356 360
\Pr	y of Sobolev Mappings and Associated Variational oblems ng Hua Lin	363
$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	roduction Analytical and Topological Properties of Sobolev Maps Singularity of Energy Minimizing Maps Limits of Singular Sets of p-Energy Minimizing Maps ferences	363 364 373 380 391
$\mathbf{M}_{\mathbf{i}}$	y of Research on Boundary Behavior of Compact anifolds via the Positive Mass Theorem	205
$1\\2\\3\\4$	Introduction	
Cu	Progress on Singularities of Lagrangian Mean urvature Flow	
An 1	dré Neves Introduction	413
2	Preliminaries	415

Contents v

3	Basic Techniques	416
4	Applications I: Blow-ups	424
5	Applications II: Self-Expanders	428
6	Application III: Stability of Singularities	430
7	Open Questions	434
R	eferences	436
Geome	tric Structures of Collapsing Riemannian Manifolds I	
A	aron Naber, Gang Tian	439
1	Introduction	439
2	Structure of Collapsed Spaces	443
3	Geometry of Toric Quotients	448
3 4	Geometry of Toric Quotients II	440
5	Proof of Theorems 1.1 and 1.2	454
6	Proof of Theorem 1.3	456
A		457
В	· ·	460
_	eferences	$460 \\ 465$
11	ererences	400
Deform	nation of Kähler-Einstein Metrics	
	Tiaofeng Sun, Shing-Tung Yau	467
21	ojcing Duni, Diving Tunig Tuu	101
1	Introduction	467
2	Complex Structures of Kähler-Einstein Manifolds	468
3	Deformation of Kähler-Einstein Metrics	473
4	Local Trivialization of Polarization Bundles	
	and Deformation of Sections	476
5	Curvature of L^2 Metrics on Direct Image Sheaves	483
6	Appendix	486
R	eferences	489
_		
	e Bubbling in Geometric Flows	
P	Peter M. Topping	491
1	Introduction	491
2	The Harmonic map Flow	495
3	Ricci Flow	499
4	Addendum — Mean Curvature Flow	505
_	eferences	506
10		500
Review	on Harmonic Diffeomorphisms Between Complete	
	Voncompact Surfaces	
	Tom Y. H. Wan	509
		- ^ -
1	Introduction	509
2	Harmonic Map Theory of Universal Teichmüller Space	510

vi Contents

3 Asymptotic Behavior of Open Harmonic Embedding From	
the Complex Plane Into Hyperbolic Plane	512
References	515
Compactifications of Complete Riemannian Manifolds	
and Their Applications	
Xiaodong Wang	517
1 Introduction	517
2 The Geometric Compactification	518
3 The Martin Compactification	
4 The Busemann Boundary	
5 A Comparison Theorem	
References	
Some Aspects of Weil-Petersson Geometry of Teichmüller Spaces	
$Sumio\ Yamada\dots$	531
1 Introduction	531
= inclination inapo into 2 and an inprincation	533
3 Finite Rank Properties of \overline{T}	
4 Coxeter-Tits Construction	
5 Weil-Petersson Geodesic Completeness	
6 Weil-Petersson Geometry of the Universal Teichmüller Space	
7 Embeddings of the Coxeter Complex into \mathcal{UT}	
8 Summary and Open Problems	
References	. 545