Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

Vol.

10:

11:

12:

13:

14:

Surveys in Differential Geometry

Lectures given in 1990
edited by S.-T. Yau and H. Blaine Lawson

Lectures given in 1993
edited by C.C. Hsiung and S.-T. Yau

Lectures given in 1996
edited by C.C. Hsiung and S.-T. Yau

Integrable systems
edited by Chuu Lian Terng and Karen Uhlenbeck

Differential geometry inspired by string theory
edited by S.-T. Yau

Essays on Einstein manifolds
edited by Claude LeBrun and McKenzie Wang

Papers dedicated to Atiyah, Bott, Hirzebruch, and Singer
edited by S.-T. Yau

Papers in honor of Calabi, Lawson, Siu, and Uhlenbeck
edited by S.-T. Yau

Eigenvalues of Laplacians and other geometric operators
edited by A. Grigor’yan and S-T. Yau

Essays in geometry in memory of S.-S. Chern
edited by S.-T. Yau

Metric and comparison geometry
edited by Jeffrey Cheeger and Karsten Grove

Geometric flows
edited by Huai-Dong Cao and S.-T. Yau

Geometry, analysis, and algebraic geometry
edited by Huai-Dong Cao and S.-T.Yau

Geometry of Riemann surfaces and their moduli spaces
edited by Lizhen Ji, Scott A. Wolpert, and S.-T. Yau






Volume 1V

Surfiegs in

()m(

Jifferential GGeometry

Integrable systems

edited by
Chuu-Lian Terng and Karen Uhlenbeck

International Press

I www.intlpress.com



Surveys in Differential Geometry, Vol. 4
Integrable systems

Editors:
Chuu-Lian Terng
Karen Uhlenbeck

Copyright © 1998, 2010 by International Press
Somerville, Massachusetts, U.S.A.

All rights reserved. Individual readers of this publication, and non-profit libraries acting
for them, are permitted to make fair use of the material, such as to copy a chapter for use
in teaching or research. Permission is granted to quote brief passages from this
publication in reviews, provided the customary acknowledgement of the source is given.
Republication, systematic copying, or mass reproduction of any material in this
publication is permitted only under license from International Press.

Excluded from these provisions is material in articles to which the author holds the
copyright. In such cases, requests for permission to use or reprint should be addressed
directly to the author.

ISBN 978-1-57146-215-2

Paperback reissue 2010. Previously published in 1998 under ISBN 1-57146-066-7 (clothbound).
An error in the previous publication’s volume title has been corrected.

Printed in the United States of America.



Contents

Introduction
Chuu-Lian Terng and Karen Uhlenbeck ......................... 5

Integrable systems in Riemannian geometry
Nigel Hitchin ...... ... i e 21

Seiberg-Witten Integrable Systems
Ron Y. Donagi ...o.ovniinii 83

Five Lectures on Soliton Equations
Edward Frenkel ......... . i 131

Geometry of the Space of Orbits of a Coxeter Group
Boris Dubrovin ...... ... 181

Differential Geometry of Moduli Spaces
Boris DUbrovin .........coiiiii e 213

Symplectic Forms in the Theory of Solitons
IM. Krichever and D.H. Phong .......... ... ... ... .. .. ..., 239

Poisson Actions and Scattering Theory for
Integrable Systems
Chuu-Lian Terng and Karen Uhlenbeck ................... .. ... 315

Loop Groups and Equations of KdV Type
Graeme Segal and George Wilson .......................... 403

Scattering and Inverse Scattering for First Order Systems
R. Bealsand R. R. Coifman ................. ...t 467






Introduction

Chuu-Lian Terng
Karen Uhlenbeck

1. The theory of integrable systems has been an active area of mathematics
for the past thirty years. Different aspects of the subject have fundamental
relations with mechanics and dynamics, applied mathematics, algebraic struc-
tures, theoretical physics, analysis and spectral theory and geometry. Most
differential geometers have some knowledge and experience with finite dimen-
sional integrable systems as they appear in sympectic geometry (mechanics) or
ordinary differential equations, although the reformulation of part of this theory
as algebraic geometry is not as commonly known. There are two quite separate
methods of extension of these ideas to partial differential equations; one based
on algebraic constructions and one based on spectral theory and analysis. These
are less familiar still to differential geometers. This volume is a collection of
papers intended to introduce and explain some of the more geometric aspects
of integrable systems to the community.

This introduction contains a short historical discussion of the early geome-
ters’ ideas on “integrable geometric constructions” followed by a brief discus-
sion of the material in the papers. An excellent historical treatment of finite
dimensional integrable systems can be found in Moser’s article [1980 Mo]. Many
expositions on integrable equations (cf. [1991 AC], [1997 Pa]) discuss the history
of the Korteveg de Vries (KdV) equation, beginning with the physical observa-
tion of Russell [1834 R] and the discovery of the equations by Boussinesq [1871
Bo], Korteveg and de Vries {1895 KdV]. In addition to describing water waves,
the KdV equation also arises as a the model for the universal limit of lattice vi-
brations as the spacing goes to zero. Fermi-Pasta-Ulam’s [1955 FPU] surprising
numerical experiments on an anharmonic lattice, and the ingenious explanation
by Zabuski-Kruskal [1965 ZK] of the results in terms of “solitons” of the KdV
equation were quickly followed by a ground-breaking paper of Gardner, Greene,
Kruskal and Miura [1967 GGKM] that introduced the method of solving KdV
using the inverse scattering transform for the Hill’s operator. This represents
the approach of applied mathematics to discovering equations, solutions, and
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6 Terng and Uhlenbeck

their scattering properties. The local differential geometry of the 19th century,
on the other hand, foreshadows to some extent modern algebraic constructions.
Rather than giving a description of the development of the basic ideas, we de-
scribe some of the early geometry and include a bibliography which lists many
of the important early papers and a selection from the years between 1975 and
1985 in chronological order. The few recent papers are those we specifically refer
to in this introduction.

Many geometric equations are known to have integrable aspects, especially
if one takes into account that most experts do not have a good definition of “in-
tegrable” as applied to partial differential equations, particularly elliptic exam-
ples. In addition to those we mention in our historical discussion, the equations
for harmonic maps (sigma models) from surfaces into groups ([1978 ZMi], [1981
Ch], [1989 U]), harmonic tori in symmetric spaces {1993 BFDP], constant mean
curvature surfaces in space forms (1989 PS], [1991 Bo]), isometric immersions
of space forms in other space forms ([1919 Caj, [1980 TT]), and the theory of
affine spheres ([1910 Tz], [1997 BS)) and affine minimal surfaces ([1980 CT]) are
all examples of “elliptic” integrable systems. Likewise, the Yang-Mills equa-
tions on C? or E%2, their reductions to monopole equations in three variables,
and self-dual equations on surfaces are new equations which originated in the
physics literature of the late 1970’s [1987 Hi]. One atypical development illus-
trating the great variety in the geometric theory is the reduction of the global
SU(N) monopole equation on R? to an integrable ordinary differential equation
by the physicist Nahm [1984, Do]. The ideas surrounding string theory result
in a series of deep and not completely understood connections between repre-
sentation theory of certain algebras and many of the more classical theories of
integrable systems in mathematics. Most recently, supersymmetric quantum
field theories produce in a natural way moduli spaces of vacua or ground states
which have new geometry generated by the supersymmetry. Since the super-
symmetry generalizes the classical symmetries which produce integrals for the
Euler-Lagrange equations via Noether’s theorem, the connection with integra-
bility is perhaps not surprising. However, this does not explain entirely the
use of integrable systems in hyper-Kahler geometry ([1992 Hi]), Seiberg-Witten
theory ([1996 DW]), special Kahler geometry ([1996 F], [1997 CRTP], [1997 Fr])
and quantum cohomology ([1991 W], [1994 KM], [1994 RT]).

The 19th century geometers were mainly interested in the local theory of
surfaces in R3, which we might regard as the prehistory of these modern con-
structions. The sine-Gordon equation arose first through the theory of surfaces
of constant Gauss curvature —1, and the reduced 3-wave equation can be found
in Darboux’s work on triply orthogonal systems of R® ([1866 Da]). In 1906, a
student of Levi Civitas, da Rios, wrote a master’s thesis, in which he modeled
the movement of a thin vortex filament in a viscous liquid using the equations
of a curve propagating in R® along its binormal ([1906 dR]). It was much later
that Hasimoto ({1971 Ha]) showed the equivalence of this system with the non-
linear Schrodinger equation. Since the equations were rediscovered somewhat
independently of their geometric history, the main contribution of the classical
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geometers lies in the methods they developed for constructing explicit solu-
tions of these equations. Ribaucour, Bianchi, Lie, and Béacklund worked out
the theory of what are now called Backlund transformations ([1883 Baj). Lie
developed a general theory of transformations known as “Lie transformations”
which includes as examples scaling transformations and Lorentz transformations
([1979 L]). Darboux transformations for the Hills operator (the isospectral op-
erator for KdV) were constructed by Darboux ([1882 Da)), but had been found
even earlier by Moutard ([1875 M]). Most of the integrable partial differential
equations are known to have Backlund, Lie and Darboux transformations.

II. The three-wave equation and the sine-Gordon equation arise out of the
study of the classical differential geometry of R3. We take a short trip back
to this subject. A triply orthogonal system on R?® is a local coordinate system
X (z1,T2,23) on R? such that the Euclidean metric ds? on R® has the form

ds® = a;(z)%dz? + ay(x)?dzs + az(z)*dx?

for some smooth functions a1, az,as, i.e., Xg, - Xy, = a?&ij for 1 <14,j <3.
Then the three one-parameter families of surfaces in R, defined by setting the
different z; to be constant, are mutually orthogonal. Already in 1813, Dupin
([1813 Du]) published a proof that the z;-curves are lines of curvature for these
surfaces. The flatness of ds? implies that

(Bij)z; + (Bji)z: + BikBrj =0,
(Bij)ze = BikBrj, i, §, k distinct,

where B;; = (ai)e,/a; for i # j. These are the Equations of Lamé or The
Lamé System. Given a solution (f8;;) of the Lamé system, finding a triply
orthogonal system with these (3;;) means finding the (a1,az,a3) that satisfy

(ai)z; = Bijaj, foralli# j.

Solutions of this latter system depend on three functions of one variable. Thus,
given one triply orthogonal system, we can derive from it infinitely many oth-
ers, parametrized by three functions of one variable. These transformations
of a triply orthogonal system are referred to as Combescure transformations
([1867 Col).

Triply orthogonal systems are easy to construct, and consequently many
solutions to the equations of Lamé are known. For example, let f(z1,z2) be a
surface in R® parametrized by line of curvatures coordinates, and let N be the
unit normal field. Then X (z1, z2,x3) = f(z1,22)+2z3N(z1,22) is an orthogonal
coordinate system for a domain in R®. Moreover, if the two fundamental forms
of the surface f are given by

I =b%d2? + b2dz2, 1T = \bida? + \pbidal,
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3

then the Euclidean metric of R written in this coordinate is ds? = };_, a?dz?,

where
ai(t1,T2,23) = (1 — M(z1,x2)x3)bi(21,22), fori=1,2, az=1.

In this case, the equations of Lamé for 3;; = (a;);/a; are precisely the Gauss
and Codazzi equations of the surface f.

Darboux considered the Lamé system restricted to the case when 8;; =
Bj:- This condition is easily seen to be equivalent to the condition that ds? =
22 da? + {%%dm% + %‘%dm% for some function ¢. Darboux called a metric with
this property an Egorof metric. In this case, The Lamé system is equivalent
to the reduced 3-wave equation studied more recently by [1973 ZM)]. Local
analytic solutions of this system were classified by Cartan (cf. [1945 Cal) using
the methods which he and Kahler developed, now usually refered to as the
“Cartan-Kéahler theory”. In fact, Cartan proved that (i) if ¢, cg, c3 are distinct,
then the line t(cy, co, c3) is non-characteristic, and (ii) that if L is a fixed, non-
characteristic line, then given any three analytic functions fi, fo, f3 defined
on L, there exists a local analytic solution B3, 813, 823 of the reduced 3-wave
system such that B2, 813, 323 are equal to fi, fo, f3 on L. However, the ability
to handle the global problem came only with the insights which come from
scattering theory, and the solution of the problem with arbitrary smooth and
rapidly decaying data is a recent development.

In the first construction we can find of a “Bécklund transformation”, Ribau-
cour ([1870 Ri]) produced in 1870 an interesting triply orthogonal system. We
include a description of this result to give a flavor of the geometry of that time.
Note that classical geometers referred to a surface in R® of constant Gauss cur-
vature —1 as pseudospherical, and we will keep this terminology. Start with a
surface M in R3, and let C, denote the unit circle in the physical tangent plane
T,M in R? centered at p. Ribaucour proved that if there exist a one-parameter
family of surfaces that meet these tangent circles orthogonally, then, first of all
both M and all the surfaces in the one-parameter family are pseudoshperical.
In addition these pseudospherical surfaces are one of the families of surfaces in
a triply orthogonal system. To describe this sytem, we let f(u,v) denote the
embedding of M in R® parametrized by line of curvature coordinates (u,v),
with e; and e; the unit vectors along the lines of curvature in the directions of
fu and f, respectively. Fix a base point py in M, and find for each angle 7 the
surface P, which is orthogonal to Cp, at the point

S (uo,vo) + cos T ey (ug,vo) + sin T ez (ug, vo)-

Define the function 6(u,v,7) to be the angle between f(u,v) + e1(u,v) and
P.(u,v)N Cf(u,u)- Then

X(u,v,7) = f(u,v) + cosb(u, v, 7)er (u,v) + sinf(u, v, 7)es (u, v)

is an orthogonal coordinate system in R®, and the surface defined by 7 = 79 is
P,.
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The sine-Gordon equation first arose in the study of pseudospherical sur-
faces. If M is a surface of negative curvature, then there exist asymptotic
coordinates (s,t). The Codazzi equations of a pseudospherical surface implies
that the (s,t) can be chosen to be arc length. There is a reduction of the
Gauss equation in which the fact that the Gauss curvature is —1 translates
into the sine-Gordon equation, gs; = sin g, where ¢ is the angle between the
s and t-curves. Thus, by The Fundamental Theorem of surfaces, there is a
local bijective correspondence between solutions of the sine-Gordon equation
and pseudospherical surfaces, up to rigid motion. The surfaces typically have
singlarities and self-intersections. Modern computer graphics provide beautiful
pictures of such surfaces which one believes the classical geometers would have
appreciated very much.

Bécklund transformations arose from a geometrical construction on pseudo-
spherical surfaces, but to understand them we need to review yet more classical
geometry. A congruence of lines is a two-parameter family of lines L(u,v) in
R3. We describe the line L(u,v) as the line through z(u,v) and in the direction
of £(u,v) parameterized by t,

Lu,v):  z(u,v) + t&(u,v).

A surface M given by Y (u,v) = z(u,v)+t(u, v)é(u,v) for some smooth function
t is called a focal surface of the congruence of lines if the line L(u, v) is tangent
to M at Y(u,v) for all (u,v). Hence &(u,v) lies in the tangent plane of M at
Y (u,v), which is spanned by z, + t,£ + t&, and z, + t,£ + t£,. This implies
that t satisfies the following quadratic equation:

det(¢, z, + t&y, Ty + t€,) = 0.

In general, this quadratic equation has two distinct solutions for ¢. Hence
generically each congruence of lines has two focal surfaces, M and M*. This
results in a diffeomorphism ¢ : M — M™ such that the line joining p and
p* = {(p) is tangent to both M and M*. We will call £ a line congruence.
If you have difficulty understanding this construction, it is helpful to think
through the construction of a congruence of lines (a one-parameter family) in
R? and the single focal curve for this family.

A line congruence £ : M — M* is called pseudospherical with constant 6
if the distance between p and p* = #(p) is sinf and the angle between the
normal of M at p and the normal of M* at p* is 6 for all p € M. Bécklund
([1883 Ba]) showed that if £ is a pseudospherical line congruence, then both M
and M* are pseudospherical, and ¢ maps asymptotic lines to asymptotic lines.
However, the transformations come about from showing that this construction
can always be realized. Given a pseudospherical surface, a constant 6, and a
unit vector vo € T'My,, not a principal direction, then there exists a unique
surface M* and a pseudospherical congruence £ : M — M* with constant 6
such that pop§ = sinfwvp. Analytically this is equivalent to the statement that
if ¢ is a solution of the sine-Gordon equation, then the following overdetermined
system of ordinary differential equations is solvable for ¢*:
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g; =gy +4ssin (9—2ﬂ> ,

BT,
i = —a+ ban(i5), (BT,.0)
where s = cscf — cotf. Moreover, a solution, ¢* is again a solution of the
sine-Gordon equation.

Bécklund’s theorem, but for § = 7, was already known to Bianchi [1879 Bi].
In fact this case had been discovered even earlier (1870) in a different form by
Ribaucour ({1870 Ri}). Note that if X (u,v, 7) is the Ribaucour triply orthogonal
system defined above and 7 is a fixed constant, then the map £ : M — P
defined by £(f(u,v)) = X(u,v,7) is a pseudospherical congruence with § =
/2. However, Ribaucour did not realize that his theorem gave a method for
constructing new pseudospherical surfaces from a given one.

The classic permutability Theorem for Bicklund transformations is due to
Bianchi (cf. [1909 Ei]). Given two pseudospherical congruences ¢; : Mo — M;
with angles 6; respectively and sinf? # sin63, then there exist an algebraic
construction of a unique surface M3, and two pseudospherical congruences
¢, - M; — Ms;, such that Ooly = 0165, The analytic reformulation of this
permutabiliy formula is the following. Suppose ¢ is a solution of the sine-
Gordon equaton and ¢;, g2 are two solutions of the above system of ordinary
differential equations (BT'), , with constants s = s1,s; respectively, where
s; = csc; — cot§;. The Bianchi permutability theorem gives a third solution
to the sine-Gordon equation

g3 = q+4tan? (sl + 5 tam(q1 — q2>>'
81 — 82 4

What are now called Darboux transformations were discovered by Darboux
during his investigation of Liouville metrics. A metric ds? = A(z,y)(dz? + dy?)
is Liouville if there is a coordinate system (u,v) such that ds? is of the form

ds® = (f(u) ~ g(v))(du® + dv?)

for some f and g of one varible. The classical geometers were interested in such
metrics at least in part because Liouville had shown that all geodesics on such
surfaces can be obtained by quadratures. The question of deciding whether a
metric ds? is Liouville led to the study of the following special second order
linear partial differential equation

Wy = (f(z+y) — gz~ y))w.

Darboux was led to look for transformations of Hill’s operators in the process of
separating variables in this equation. The original analytic version of Darboux
transformation ({1882 Da] and [1889 Da] Chap. 9) is the following: Let ¢ be
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a smooth function of one variable, Ag a constant, and suppose that f satisfies
f"=1(qg+ X)f. Set
¢t =f(f7)" = o

If y(z, A) is the general solution of the Hills operator with potential g:

y"' = (q¢+ Ny,

then z = y' — (f/f")y is the general solution of the Hills operator with potential
i
q":
2" = (" + \)z.

Next, suppose that we factor
D? —qg— ) = (D+v)(D -v),

In other words, suppose that v satisfies v, + v? = g+ Ao. (Here D = d/dz.)
Choose f so that f'/f = v. Then

(D —v)(D+v)=D%*—¢' - X.

This Darboux theorem gives an algebraic algorithm (without quadrature) to
transform general solutions of D2 — ¢ — A to those of D? — g — .

Examples where the classical geometry appears in the modern theory of
integrable systems are common and easily found. For example, orthogonal
systems and their Combescure transformations arise in the local Hamiltonian
theory of hydrodynamics of weakly deformed soliton lattices, and are known
as the Whitham equations. The latter is the work of Dubrovin and Novikov
([1983 DN]) and Tsarév ([1991 Ts]). An Egorof metric that is homogeneous of
degree m, i.e., ¢z, (rz) = r™¢,, (z) for all 7, gives rise to a Frobenius manifold in
the sense of Dubrovin, and such metrics give solutions to the WDVV equation
in the study of Gromov-Witten invariants ([1991 W], [1995 RT], [1996 Du]).
One of the best known examples is perhaps the Darboux transformations. If
q(z,t) is a solution of KdV then the Hills operators with potential ¢(-,t) are
isospectral. It follows that the Darboux transformations of the Hills operators
induce transformations on the space of solutions of KdV. This is a critical
observation due to Adler and Moser ([1978 AM]) and Deift ([[1978 De]).

III. Many of the topics mentioned in the previous paragraphs will reap-
pear in the papers in this volume, including the classical differential geometry.
It is easy to understand the importance of the subject of integrable systems
in modern mathematics once one notes that all of the papers except the last
three mention either in passing or as fundamental motivation applications to
constructions which are relevant in string theory and supersymmetric quantum
field theory. Techniques from integrable systems, despite their limitations in
classical geometry and applications, have provided one among the successful
tools for rigorous mathematical interpretation of ideas in quantum field theory.
It should be emphasized that it is mainly geometric ideas about classical geo-
metric moduli spaces which can be treated. These spaces arise only as vacua for
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the field theories, but the special properties of the various field theories induce
geometry on the moduli spaces which is not the usual Riemannian or symplec-
tic geometry familiar to differential geometers. Because of the nature of the
questions, the smooth part of the moduli space is not necessarily compact, so
local algebraic results reminiscent of the classical 19th century have relevance
if a more complete global analysis is not feasible.

Nigel Hitchin’s paper “Integrable systems in Riemannian Geometry” starts
with a discussion of what integrability means, and of the contrast between this
century and the previous one. He goes on to discuss three problems familiar
to differential geometers: constant mean curvature surfaces (tori) in R®, Ein-
stein metrics with certain symmetries in four dimensions, and hyper-Kahler
manifolds. We meet loop groups in the section on tori, the flat Egorov met-
rics studied by Darboux in the section on Einstein manfiolds, and a moduli
space (for a sypersymmetric quantum field theory) which has one of the special
geometries, the hyper-Kéhler one. The paper gives three different, beautiful
illustrations of reduction of partial differential equations to finite dimensional
flows and a nice explanation of “algebraically integrable”.

The paper “Seiberg-Witten Integrable Systems” by Ron Donagi deals en-
tirely with finite dimensional algebraically integrable systems which arise di-
rectly from a supersymmetric quantum field theory. The integrable system
comes from the study of Higg’s bundles on curves, and the paper is the only
one to attempt a useful discussion of how an integrable system can relate to
high energy physics. A host of references to the physics literature are given for
the ambitious geometer, and a certain amount of algebraic geometry is needed
to follow the details.

The paper “Five Lectures on Soliton Equations” by Edward Frenkel is mo-
tivated by the study of deformations of conformal field theories, and affine Lie
algebras play a major role. The basic theory for the KdV equation, which is
usally presented in terms of isospectral flows for a second order Hill’s operator,
is rederived for extensions of modified KdV, a system which is contained in the
Non-linear Schrodinger hierarchy. This is particularly helpful in understanding
the generality with which the algebraic constructions for KdV can be carried
over to other classes of integrable systems and their Poisson brackets.

We are fortunate to include two papers by Boris Dubrovin which are most
closely related to the classical geometry, but which in addition have important
applications in two dimensional topological quantum field theory. In the paper
“Differential Geometry of Moduli Spaces and Applications to Soliton Equations
and Topological Conformal Field Theory”, the relationship among Egorov met-
rics, n-wave equations, flat metrics on moduli spaces of curves with marked
points and topological conformal field theories is discussed. The moduli space
in the second paper “Differential Geometry of the Space of Orbits of a Coxeter
Group” is a space of orbits, and carries the natural structure of a Frobenius
manifold, a coordinate free description of the WDVV (Witten-Dijkgraaf, Ver-
linde, Verlinde) equations.

The emphasis in the paper “Symplectic Forms in the Theory of Solitons”
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by Igor Krichever and Duong Phong lies on the construction of a universal
symplectic form, which can be specialized to many specific cases. We meet, for
the first time, global questions in the identification of scattering data for the
initial data given in two dimensions for the K P equation. A description of the
WKB or Whitham flows on the moduli spaces of exact solutions leads into a
discussion of leafs of the various moduli spaces of curves and applications to the
topological Landau-Ginsburg models treated by Dubrovin. The paper includes
applications to the Seiberg-Witten moduli spaces discussed by Donagi. The
careful discussion of the analytic versus algebraic constructions is particularly
helpful to geometers in the habit of thinking in terms of actual solutions to
partial differential equations.

The final recent paper in the collection, “Poisson Actions and Scattering
Theory” is our own. While partially motivated by questions from modern
physics, it represents an attempt to reconcile the local algebraic methods with
an understanding of global inverse scattering theory on the line. Reality condi-
tions consistent with a compact group permit this, but restrict the number of
integrable systems to whcih the global theory is applicable. We also give an ex-
planation of Bécklund (or Darboux) transformations in terms of the action of a
rational subgroup of a loop group. The implication is that not all constructions
are best described in terms of Lie groups and infinitesimal actions, especially if
one is interested in global questions.

We have reprinted two influential papers which where originally published in
1984 and 1985. The paper “Loop groups and Equations of KdV type” by Graeme
Segal and George Wilson is an important introduction to both subjects. A
description of the KP hierarchy as commuting flows on an infinite dimensional
Grassman manifold was originally due to Sato ([1981 S], [1983 DJKM]), but the
work of Segal and Wilson is written up with a geometeric emphasis very much
appreciated by some of us. We argued for the inclusion of the seminal paper
“Scattering and Inverse Scattering for First Order Systems” by Richard Beals
and Ronald Coifman. The algebraic geometry needed to treat the periodic
theory is referred to by many authors in this volume, but it seems important
for geometers to also have some understanding of analytic issues involved in
constructing solutions to equations on non-compact domains.
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