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Preface

Hyperkédhler manifolds have appeared at first within the framework of dif-
ferential geometry as an example of Riemannian manifolds with holonomy
of a special restricted type. However, they have soon exhibited such diverse
and unexpected links with various branches of mathematics that now hy-
perkahler geometry by itself forms a separate research subject. Among the
traditional areas fused within this new subject are differential and algebraic
geometry of complex manifolds, holomorphic symplectic geometry, geomet-
ric representation theory, Hodge theory and many others. The most recent
addition to the list is the link between hyperkédhler geometry and theoretical
physics: it turns out that hyperkdhler manifolds play a critical part in the
modern version of the string theory, which is in itself the basis for the future
unified field theory and quantum gravity.

Perhaps because the structure of a hyperkiahler manifold is so rich, such
manifolds are quite rare and hard to construct. Thus every new example
or a class of examples of hyperkdhler manifolds is of considerable interest.
The main goal of this book is to describe two recent developments in this
area, one dealing with compact hyperkdhler manifolds, the other - with a
rather general class of non-compact ones. In order to make the presentation
as self-contained as possible, we have included much preliminary material
and gave an exposition of most of the basic facts of the theory. We believe
that this makes it possible to read the book without any prior knowledge
of hyperkdhler geometry and to use it as an introduction to the subject.
On the other hand, it is our hope that the new examples of hyperkahler
manifolds constructed here would be of interest to a specialist in the field.

For the detailed description of the new results proved in the book the
reader is referred to the introductions to the individual chapters. In this
general introduction we restrict ourselves to giving a brief historical overview
of the theory of hyperkéhler manifolds and indicating the place of our results
in the general framework of hyperkdhler geometry.
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Historical overview

Recall that one can define a Kahler manifold as a Riemannian manifold M
equipped with an almost complex structure parallel with respect to the Levi-
Civita connection. It is well-known that such an almost complex structure
is automatically integrable, thus every K&hler M is a complex manifold.
Moreover, the Riemannian metric and the complex structure together de-
fine a non-degenerate closed 2-form w on M, thus making M a symplectic
manifold.

The notion of a hyperkiahler manifold is obtained from this definition by
replacing the field of complex numbers with the algebra of quaternions. A
hyperkdhler manifold is by definition a Riemannian manifold M equipped
with two anticommuting almost complex structures parallel with respect to
the Levi-Civita connection. These two almost complex structures generate
an action of the quaternion algebra in the tangent bundle to M, which is
also parallel. Every quaternion h with h? = —1 defines an almost complex
struture on M. This almost complex structure is parallel, hence integrable.
Thus every hyperkdhler manifold is canonically complex, and in many dif-
ferent ways.

It is convenient to fix once and for all a quaternion I with 72 = —1 and to
consider a hyperkdhler manifold M as complex by means of the correspond-
ing complex structure. It is canonically Kdhler. Moreover, one can combine
the other complex structures on M with the Riemannian metric and obtain,
apart from the K&hler 2-form w, a canonical closed non-degenerate holo-
morphic 2-form £ on M. Thus every hyperkidhler manifold carries canonical
Kiahler and holomorphically symplectic structures.

A Riemannian manifold of dimension 4n is hyperk&hler if and only if its
holonomy group is contained in the symplectic group Sp(n). As such, hyper-
kdhler manifolds first appeared in the classification of all possible holonomy
groups given by M. Berger [Ber]. The term “hyperkdhler manifold” was
introduced by E, Calabi in his paper [C], where he also constructed several
non-trivial examples of hyperkahler metrics. All of Calabi’s examples were
non-compact. In fact, all these manifolds were total spaces of cotangent
bundles to Kihler manifolds.

At the time of the original paper of Calabi’s, it seemed that hyperkahler
manifolds are a rather unusual phenomenon, not unlike, for example, spo-
radic simple groups. However, starting with the beginning of the eighties,
there has been a wave of discoveries in the area, and we now know a lot of
examples of hyperkdhler metrics which occur “in the nature”. These exam-
ples split naturally into two groups, depending on whether the underlying



complex manifold is compact.

A powerful tool for constructing compact hyperkdhler manifolds is the
famous Calabi-Yau Theorem, which provides a Ricci-flat Kihler metric on
every compact manifold of Kahler type with trivial canonial bundle. Its use-
fulness for the hyperkédhler geometry lies in the fact that every hyperkdhler
manifold is canonically holomorphically symplectic. The converse statement
is far from being true: a holomorphically symplectic Kihler manifold does
not have to be hyperkdhler. However, the converse is true if we require in
addition that the hololomorphic symplectic form is parallel with respect to
the Levi-Civita connection. It is easy to see that every Kihler manifold
equipped with a parallel holomorphic symplectic form is hyperk&hler.

In general it is very hard to check whether a holomorphic symplectic
form on a compact Kahler manifold is parallel. However, there exists a
theorem of S. Bochner’s [Boch] which claims that this is always the case
when the Kéhler metric is Ricci-flat. Since the canonical bundle of a holo-
morphically symplectic manifold is trivial, indeed, trivialized by the power
of the symplectic from, the Calabi-Yau Theorem shows that every com-
pact holomorphically symplectic manifold of Kihler type carries a Ricci-flat
Kdhler metric. This metric must be hyperkahler by the Bochner Theorem.
Thus every compact holomorphically symplectic manifold of Kdhler type is
hyperkéhler.

Well-known examples of compact holomorphically symplectic manifolds
of dimension 2 are abelian complex surfaces and K3 surfaces. In higher
dimensions non-trivial examples of such manifolds have been given by A.
Beauville [Beau], extending earlier results of A. Fujiki [F]. Beauville’s ex-
amples are the Hilbert schemes of points on an abelian or a K3 surface. All
these manifolds are of Kdhler type, hence hyperkahler.

Given a compact hyperkdhler manifold M, one can consider moduli
spaces M of stable holomorphic vector bundles on M with fixed Chern
classes. When M is 4-dimensional, hence either an abelian surface or a K3
surface, the moduli space M is known to be smooth and hyperkahler (see
[Kob] for an excellent exposition of these results). When the Chern classes
are such that M is compact, we obtain in this way a new compact hyperkah-
ler manifold. This situation was studied in detail by S. Mukai in [M1], [M2].
It is now known that some of the compact moduli spaces of stable bundles
on a K3 surface are deformationally equivalent to hyperkédhler manifolds of
the type constructed by Beauville. Conjecturally all these moduli spaces lie
in the Beauville’s deformation class. We refer the reader to [Huy] for an
overview of this subject.

These results were partially generalized to higher dimensions in [V1].



The moduli space of stable bundles on a higher-dimensional hyperkdhler
manifold is no longer automatically smooth. However, it is a singular hy-
perkihler variety in the sense of [V2]. This implies, in particular, that it
is hyperkihler near every smooth point. Moreover, a singular hyperkahler
veriety can be canonically desingularized to a smooth hyperkéhler manifold.

An outstanding problem in the theory of compact hyperkadhler manifolds
is to find an example of such a manifold which would be simply connected
and not equivalent deformationally to a product of the ones constructed by
Beauville. Several important results (([OGr]) on this subject have appeared
recently, but the problem is still not completely closed. The first chapter
of the present book describes a different approach to this subject. The
results of Mukai and Verbitsky are extended and strengthened in a way
that conjecturally leads to the hoped-for examples of compact hyperkéhler
manifolds belonging to a new deformation class.

Both the Calabi-Yau Theorem and the Bochner Theorem are results of
a global nature and cannot be used to construct non-compact hyperkah-
ler manifolds. Two general methods are known which can be used for this
purpose. The first one uses the link between the theory of hyperkahler man-
ifolds and the holomorphic geometry provided by the notion of the twistor
space. The twistor space construction, introduced by R. Penrose, has a long
and glorious history. The reader is referred to [HKLR] for a detailed expo-
sition of this subject. Here we only mention that the twistor space X for a
4n-dimensional hyperkédhler manifold M is a holomorphic manifold of com-
plex dimension 2n+2 canonically associated to M, and that the holomorphic
structure on the twistor space X embodies most of the differential-geometric
properties of the hyperkdhler manifold M.

There exists a theorem which allows one to reconstruct a hyperkih-
ler manifold M from its twistor space X equipped with some additional
structures. Therefore, if it is impossible to construct M explicitly, one
can construct X instead. In this way one can, for example, construct an
infinite-dimensional family of hyperkihler metrics on the vector space C2"
(see [HKLR]).

Another general method of constructing non-compact hyperkéhler man-
ifolds is the famous hyperkihler reduction technique introduced by Hitchin
[Hi1], Hitchin et al. [HKLR]. It is this technique that led to recent discov-
eries of hyperkéhler structures on many interesting manifolds. Fortunately,
the hyperkahler reduction is well-covered in the literature (see, for example,
[Hi3]). Therefore we will only list the most important examples of hyper-
kihler manifolds obtained by this method.



e One of the original examples of hyperkdhler manifolds given by Calabi
was the total space of the cotangent bundle to a complex projective
space. This manifold admits an elementary construction via the hy-
perkéhler reduction.

e Let I € SL(2,C) be a finite subgroup. The quotient C?/TI" has an
isolated singularity at 0 which can be blown up to a non-singular com-
plex manifold. This manifold can be equipped with a hyperkihler
metric by means of the hyperkdhler reduction. The resulting metric
is asymptotically locally Euclidean (ALE) at infinity. It was discov-
ered by P.B. Kronheimer [Krl1] and generalized by Kronheimer and H.
Nakajima [KN]. Nakajima [N] has recently generalized this example
even further and obtained a whole family of hyperkdhler manifolds
called the quiver varieties.

e Let G be a compact Lie group, and let LG be the (infinite-dimensional)
Lie group of maps from the unit cricle S! to G. A hyperkihler metric
on the quotient LG /G has been constructed by S. Donaldson [D].

e Let S be a compact complex curve, and let M be the moduli space of
bundles on S equipped with a flat connection. Hitchin [Hi2] has con-
structed a hyperkéhler structure on the space M. This construction
has been recently generalized by C. Simpson [Sim] to the case when S
is an arbitrary projective complex manifold.

A related group of examples is obtained by considering the solutions
to a system of ordinary differential equations called the Nahm equations.
These equations first appeared in the work of Schmid [Sch] on the variations
of Hodge structures. They have been used by Kronheimer [Kr2],[Kr3] to -
obtain a hyperkdhler metric on an orbit in the coadjoint representstion of
an arbitrary semisimple complex ie group G. More recently Kronheimer’s
method was used in papers [BG],[DS] to obtain new examples of hyperkéahler
manifolds. This method is not directly related to the hyperkihler reduction
but shares many features with it. Some of the metrics obtained by reduction
can be also constructed via the Nahm equations, and vice versa.

Unfortunately, while hyperkéhler reduction is a generous source of new
hyperkdhler metrics, it can only be pushed so far. One of the problems
which seems to lie outside of the scope of this approach is that of construct-
ing a hyperkdhler metric on the total space of the cotangent bundle to a
non-homogeneous Kahler manifold. The second chapter of the present book
describes such a construction. This construction is local and works for an



arbitrary Kédhler manifold. The methods used are necessarily different from
the ones already exploited in the literature and consist of explicit but cum-
bersome application of the deformation theory in the spirit of Kodaira and
Spencer [Kod].
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