Lectures on Quantum Groups

by Pavel Etingof and Olivier Schiffmann

Lectures on Quantum Groups, Second Edition by Pavel Etingof and Olivier Schiffmann

Copyright © 1998, 2002, 2010 by International Press Somerville, Massachusetts, U.S.A.

All rights reserved. Individual readers of this publication, and non-profit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgement of the source is given. Republication, systematic copying, or mass reproduction of any material in this publication is permitted only under license from International Press.

ISBN 978-1-57146-207-7

Paperback reissue 2010. Previously published in 2002 under ISBN 1-57146-094-2 (clothbound).

Printed in the United States of America.

to our parents

Contents

Introduction

1	Po	isson algebras and q									1
	1.1	Modules over rings of	power series								1
		1.1.1 Topologically f	ree K -modules								1
		1.1.2 Completion of	K-modules								2
	1.2	Poisson algebras									2
											2
			oisson algebras								3
	1.3	Quantization of Poisso	on algebras								4
		1.3.1 Deformations									4
											4
			antization								5
			try in quantization								7
	1.4	Poisson manifolds and	quantization								8
		1.4.1 Definition	- 								8
		1.4.2 Symplectic leave	ves of a Poisson manife	old .							9
			f Poisson manifolds .								10
			antization of a Poisson								
			antization)								10
	1.5	Rational forms of a qu									11
	1.6	Physical meaning of q	uantization								12
2	Poi	isson-Lie groups									15
	2.1	Poisson-Lie groups .									15
											15
	2.2	Lie bialgebras									16
											16
			e bialgebras								18
											19
	2.3	Poisson-Lie theory .									19
			of Poisson-Lie theory								19
			ie group								21
			al Lie bialgebras and d								22
3	Coh	oundary Lie bialgeb	ras								25
	3.1	Some Lie algebra coho									25 25
	3.2	Coboundary Lie bialge									26
	3.3	The classical Yang-Ba	vter man	•••	•••	•••	• •	·	•	•	20 26
	3.4	Triangular Lie bialgeb	ras and the classical V	 Άησ-Ι	· · Ravt	\cdot \cdot	• •	· ati	• or	•	20 28
	0. I		ino and one crassical I		JUAU	UL C	que	.01			40

 $\mathbf{i}\mathbf{x}$

3.6 Quasitriangular Lie bialgebras 31 3.7 Examples of coboundary, triangular and quasitriangular Lie bialgebras 32 4 Drinfeld's double construction 34 4.1 Manin triples 34 4.2 Drinfeld's double 35 4.3 Examples 38 4.4 Standard Lie bialgebra structure on simple Lie algebras 38 4.4.1 Notations 39 5 Belavin-Drinfeld classification (I) 41 5.1 Coboundary structure on simple 11 5.2 Skew-symmetric r-matrices 42 5.3 Non skew-symmetric r-matrices 42 5.4 Proof of the classification theorem 44 5.4.2 Proof of part 1) 45 5.4.3 Proof of part 2) 47 6 Infinite dimensional Lie bialgebras 49 6.1 Infinite Manin triples 49 6.2 Examples 50 6.3 The CYBE with spectral parameter 51 6.3.1 An example: the Yangian and its dual 51 6.3.2 T		3.5	Classification of triangular structures	29
3.7 Examples of coboundary, triangular and quasitriangular Lie bialgebras 32 4 Drinfeld's double construction 34 4.1 Manin triples 34 4.2 Drinfeld's double 35 4.3 Examples 38 4.4 Standard Lie bialgebra structure on simple Lie algebras 38 4.4 Standard Lie bialgebra structure on simple Lie algebras 38 4.4.1 Notations 39 5 Belavin-Drinfeld classification (I) 41 5.1 Coboundary structure on simple 11 5.2 Skew-symmetric r-matrices 42 5.3 Non skew-symmetric r-matrices 42 5.4 Proof of the classification theorem 44 5.4.2 Proof of part 1) 45 5.4.3 Proof of part 2) 47 6 Infinite dimensional Lie bialgebras 49 6.1 Infinite Manin triples 49 6.2.1 The standard structure on Kac-Moody algebras 50 6.3 The CYBE with spectral parameter 51 6.3.1 An example: the Yangian and its dual <		3.6		31
4 Drinfeld's double construction 34 4.1 Manin triples 34 4.2 Drinfeld's double 35 4.3 Examples 38 4.4 Standard Lie bialgebra structure on simple Lie algebras 38 4.4 Standard Lie bialgebra structure on simple Lie algebras 38 4.4.1 Notations 39 5 Belavin-Drinfeld classification (I) 41 5.1 Coboundary structure on simple 1 Lie bialgebras 41 5.2 Skew-symmetric r-matrices 42 5.3 Non skew-symmetric r-matrices 42 5.4 Proof of the classification theorem 44 5.4.2 Proof of part 1) 45 5.4.3 Proof of part 2) 47 6 Infinite dimensional Lie bialgebras 49 6.1 Infinite Manin triples 49 6.2 Examples 50 6.3 The CYBE with spectral parameter 51 6.3.1 An example: the Yangian and its dual 51 6.3.2 The CYBE with spectral parameter 53 6.4 Solutions of the CYBE with spectral parameter 53 6.5 Affine Lie algebras 57 6.5 Affine Lie algebras structure 59 7<		3.7		
4.1 Manin triples 34 4.2 Drinfeld's double 35 4.3 Examples 38 4.4 Standard Lie bialgebra structure on simple Lie algebras 38 4.4 Standard structure 39 5 Belavin-Drinfeld classification (I) 41 5.1 Cobundary structure on simple 11 5.1 Cobundary structure on simple 41 5.2 Skew-symmetric r-matrices 42 5.3 Non skew-symmetric r-matrices 42 5.4 Proof of the classification theorem 44 5.4.1 The Cayley transform 44 5.4.2 Proof of part 1) 45 5.4.3 Proof of part 2) 47 6 Infinite dimensional Lie bialgebras 49 6.1 Infinite Manin triples 49 6.2 Examples 50 6.3.1 An example: the Yangian and its dual 51 6.3.2 The CYBE with spectral parameter 53 6.3.3 Construction of a Lie bialgebra from an r-matrix 54 6.4 Solutions of the CYBE			quasitriangular Lie bialgebras	32
4.1 Manin triples 34 4.2 Drinfeld's double 35 4.3 Examples 38 4.4 Standard Lie bialgebra structure on simple Lie algebras 38 4.4 Standard structure 39 5 Belavin-Drinfeld classification (I) 41 5.1 Cobundary structure on simple 11 5.1 Cobundary structure on simple 41 5.2 Skew-symmetric r-matrices 42 5.3 Non skew-symmetric r-matrices 42 5.4 Proof of the classification theorem 44 5.4.1 The Cayley transform 44 5.4.2 Proof of part 1) 45 5.4.3 Proof of part 2) 47 6 Infinite dimensional Lie bialgebras 49 6.1 Infinite Manin triples 49 6.2 Examples 50 6.3.1 An example: the Yangian and its dual 51 6.3.2 The CYBE with spectral parameter 53 6.3.3 Construction of a Lie bialgebra from an r-matrix 54 6.4 Solutions of the CYBE		ъ		
4.2 Drinfeld's double 35 4.3 Examples 38 4.4 Standard Lie bialgebra structure on simple Lie algebras 38 4.4 Standard structure 39 5 Belavin-Drinfeld classification (I) 41 5.1 Coboundary structure on simple 41 5.2 Skew-symmetric r-matrices 42 5.3 Non skew-symmetric r-matrices 42 5.4 Proof of the classification theorem 44 5.4.1 The Cayley transform 44 5.4.2 Proof of part 1) 45 5.4.3 Proof of part 2) 47 6 Infinite dimensional Lie bialgebras 49 6.1 Infinite Manin triples 49 6.2 Examples 50 6.3.1 An example: the Yangian and its dual 51 6.3.2 The CYBE with spectral parameter 53 6.3.3 Construction of a Lie bialgebra from an r-matrix 54 6.4 Solutions of the CYBE with spectral 57 6.5.1 Definition 57 6.5.1 Definition <td>4</td> <td></td> <td></td> <td></td>	4			
4.3 Examples 38 4.4 Standard Lie bialgebra structure on simple Lie algebras 38 4.4.1 Notations 38 4.4.2 Standard structure 39 5 Belavin-Drinfeld classification (I) 41 5.1 Coboundary structure on simple 41 5.2 Skew-symmetric r-matrices 42 5.3 Non skew-symmetric r-matrices 42 5.4 Proof of the classification theorem 44 5.4.1 The Cayley transform 44 5.4.2 Proof of part 1) 45 5.4.3 Proof of part 2) 47 6 Infinite dimensional Lie bialgebras 49 6.1 Infinite Manin triples 49 6.2 Examples 50 6.3.1 An example: the Yangian and its dual 51 6.3.2 The CYBE with spectral parameter 53 6.3.3 Construction of a Lie bialgebra from an r-matrix 54 6.4 Solutions of the CYBE with spectral 57 6.5.1 Definition 57 6.5.2 Lie bialgebra str				
4.4 Standard Lie bialgebra structure on simple Lie algebras 38 4.4.1 Notations 38 4.4.2 Standard structure 39 5 Belavin-Drinfeld classification (I) 41 5.1 Coboundary structure on simple 41 5.2 Skew-symmetric r-matrices 42 5.3 Non skew-symmetric r-matrices 42 5.4 Proof of the classification theorem 44 5.4.2 Proof of part 1) 45 5.4.3 Proof of part 2) 47 6 Infinite dimensional Lie bialgebras 49 6.1 Infinite Manin triples 49 6.2 Examples 50 6.3 The CYBE with spectral parameter 51 6.3.1 An example: the Yangian and its dual 51 6.3.2 The CYBE with spectral parameter 53 6.3 Construction of a Lie bialgebra from an r-matrix 54 6.4 Solutions of the CYBE with spectral 57 6.5 Affine Lie algebras 57 6.5 Affine Lie algebras 57 6.5.2				
4.4.1Notations384.4.2Standard structure395Belavin-Drinfeld classification (I)415.1Coboundary structure on simple415.2Skew-symmetric r-matrices425.3Non skew-symmetric r-matrices425.4Proof of the classification theorem445.4.1The Cayley transform445.4.2Proof of part 1)455.4.3Proof of part 2)476Infinite dimensional Lie bialgebras496.1Infinite Manin triples506.2.1The standard structure on Kac-Moody algebras506.3The CYBE with spectral parameter516.3.1An example: the Yangian and its dual516.3.2The CYBE with spectral parameter536.3.3Construction of a Lie bialgebra from an r-matrix546.4Solutions of the CYBE with spectral576.5.1Definition576.5.2Lie bialgebra structure597Belavin-Drinfeld classification (II)607.1Properties of nondegenerate solutions607.3Proof of the classification theorem647.3.1Myberg's theorem64				
4.4.2 Standard structure 39 5 Belavin-Drinfeld classification (I) 41 5.1 Coboundary structure on simple 41 5.2 Skew-symmetric r-matrices 42 5.3 Non skew-symmetric r-matrices 42 5.4 Proof of the classification theorem 44 5.4.1 The Cayley transform 44 5.4.2 Proof of part 1) 45 5.4.3 Proof of part 2) 47 6 Infinite dimensional Lie bialgebras 49 6.1 Infinite Manin triples 49 6.2 Examples 50 6.3.1 The standard structure on Kac-Moody algebras 50 6.3.1 An example: the Yangian and its dual 51 6.3.2 The CYBE with spectral parameter 53 6.3.3 Construction of a Lie bialgebra from an r-matrix 54 6.4 Solutions of the CYBE with spectral 57 6.5.1 Definition 57 6.5.2 Lie bialgebra structure 59 7 Belavin-Drinfeld classification (II) 60 7.1 <th></th> <th>4.4</th> <th></th> <th></th>		4.4		
5 Belavin-Drinfeld classification (I) 41 5.1 Coboundary structure on simple 41 5.2 Skew-symmetric r-matrices 42 5.3 Non skew-symmetric r-matrices 42 5.4 Proof of the classification theorem 44 5.4.1 The Cayley transform 44 5.4.2 Proof of part 1) 45 5.4.3 Proof of part 2) 47 6 Infinite dimensional Lie bialgebras 49 6.1 Infinite Manin triples 49 6.2 Examples 50 6.3.1 The standard structure on Kac-Moody algebras 50 6.3.1 An example: the Yangian and its dual 51 6.3.2 The CYBE with spectral parameter 53 6.3.3 Construction of a Lie bialgebra from an r-matrix 54 6.4 Solutions of the CYBE with spectral 57 6.5.1 Definition 57 6.5.2 Lie bialgebra structure 59 7 Belavin-Drinfeld classification (II) 60 7.1 Properties of nondegenerate solutions 60				
5.1Coboundary structure on simple Lie bialgebras415.2Skew-symmetric r-matrices425.3Non skew-symmetric r-matrices425.4Proof of the classification theorem445.4.1The Cayley transform445.4.2Proof of part 1)455.4.3Proof of part 2)476Infinite dimensional Lie bialgebras496.1Infinite Manin triples496.2Examples506.3.1The standard structure on Kac-Moody algebras506.3.1An example: the Yangian and its dual516.3.2The CYBE with spectral parameter536.3.3Construction of a Lie bialgebra from an r-matrix546.4Solutions of the CYBE with spectral parameters556.5Affine Lie algebras576.5.1Definition576.5.2Lie bialgebra structure597Belavin-Drinfeld classification (II)607.1Properties of nondegenerate solutions607.2Meromorphic continuation of $r(z)$ to \mathbb{C} 627.3Proof of the classification theorem64			4.4.2 Standard structure	39
Lie bialgebras415.2Skew-symmetric r-matrices425.3Non skew-symmetric r-matrices425.4Proof of the classification theorem445.4.1The Cayley transform445.4.2Proof of part 1)455.4.3Proof of part 2)476Infinite dimensional Lie bialgebras496.1Infinite Manin triples496.2Examples506.3.1The standard structure on Kac-Moody algebras506.3.1An example: the Yangian and its dual516.3.2The CYBE with spectral parameter536.3.3Construction of a Lie bialgebra from an r-matrix546.4Solutions of the CYBE with spectral556.5Affine Lie algebras576.5.1Definition576.5.2Lie bialgebra structure597Belavin-Drinfeld classification (II)607.1Properties of nondegenerate solutions607.2Meromorphic continuation of $r(z)$ to \mathbb{C} 627.3Proof of the classification theorem64	5	Bel	avin-Drinfeld classification (I)	41
5.2 Skew-symmetric r-matrices 42 5.3 Non skew-symmetric r-matrices 42 5.4 Proof of the classification theorem 44 5.4.1 The Cayley transform 44 5.4.2 Proof of part 1) 45 5.4.3 Proof of part 2) 47 6 Infinite dimensional Lie bialgebras 49 6.1 Infinite Manin triples 49 6.2 Examples 50 6.2.1 The standard structure on Kac-Moody algebras 50 6.3.1 An example: the Yangian and its dual 51 6.3.2 The CYBE with spectral parameter 53 6.3.3 Construction of a Lie bialgebra from an r-matrix 54 6.4 Solutions of the CYBE with spectral parameter 55 6.5 Affine Lie algebras 57 6.5.1 Definition 57 6.5.2 Lie bialgebra structure 59 7 Belavin-Drinfeld classification (II) 60 7.1 Properties of nondegenerate solutions 60 7.2 Meromorphic continuation of $r(z)$ to \mathbb{C} 62		5.1	Coboundary structure on simple	
5.3 Non skew-symmetric r-matrices 42 5.4 Proof of the classification theorem 44 5.4.1 The Cayley transform 44 5.4.2 Proof of part 1) 45 5.4.3 Proof of part 2) 47 6 Infinite dimensional Lie bialgebras 49 6.1 Infinite Manin triples 49 6.2 Examples 50 6.3.1 The standard structure on Kac-Moody algebras 50 6.3.1 An example: the Yangian and its dual 51 6.3.2 The CYBE with spectral parameter 53 6.4 Solutions of the CYBE with spectral 55 6.5 Affine Lie algebras 57 6.5.1 Definition 57 6.5.2 Lie bialgebra structure 59 7 Belavin-Drinfeld classification (II) 60 7.1 Properties of nondegenerate solutions 60 7.2 Meromorphic continuation of $r(z)$ to \mathbb{C} 62 7.3 Proof of the classification theorem 64			Lie bialgebras	41
5.4 Proof of the classification theorem 44 5.4.1 The Cayley transform 44 5.4.2 Proof of part 1) 45 5.4.3 Proof of part 2) 47 6 Infinite dimensional Lie bialgebras 49 6.1 Infinite Manin triples 49 6.2 Examples 49 6.3 The CYBE with spectral parameter 50 6.3.1 An example: the Yangian and its dual 51 6.3.2 The CYBE with spectral parameter 53 6.3.3 Construction of a Lie bialgebra from an r-matrix 54 6.4 Solutions of the CYBE with spectral parameter 55 6.5 Affine Lie algebras 57 6.5.1 Definition 57 6.5.2 Lie bialgebra structure 59 7 Belavin-Drinfeld classification (II) 60 7.1 Properties of nondegenerate solutions 60 7.2 Meromorphic continuation of $r(z)$ to \mathbb{C} 62 7.3 Proof of the classification theorem 64		5.2	Skew-symmetric r-matrices	42
5.4.1 The Cayley transform 44 5.4.2 Proof of part 1) 45 5.4.3 Proof of part 2) 47 6 Infinite dimensional Lie bialgebras 49 6.1 Infinite Manin triples 49 6.2 Examples 49 6.2 Examples 50 6.3.1 The standard structure on Kac-Moody algebras 50 6.3.3 The CYBE with spectral parameter 51 6.3.1 An example: the Yangian and its dual 51 6.3.2 The CYBE with spectral parameter 53 6.3.3 Construction of a Lie bialgebra from an r-matrix 54 6.4 Solutions of the CYBE with spectral parameter 55 6.5 Affine Lie algebras 57 6.5.1 Definition 57 6.5.2 Lie bialgebra structure 59 7 Belavin-Drinfeld classification (II) 60 7.1 Properties of nondegenerate solutions 60 7.2 Meromorphic continuation of $r(z)$ to C 62 7.3 Proof of the classification theorem 64 <td></td> <td>5.3</td> <td>Non skew-symmetric r-matrices</td> <td>42</td>		5.3	Non skew-symmetric r-matrices	42
5.4.2 Proof of part 1) 45 5.4.3 Proof of part 2) 47 6 Infinite dimensional Lie bialgebras 49 6.1 Infinite Manin triples 49 6.2 Examples 50 6.2.1 The standard structure on Kac-Moody algebras 50 6.3 The CYBE with spectral parameter 51 6.3.1 An example: the Yangian and its dual 51 6.3.2 The CYBE with spectral parameter 53 6.3.3 Construction of a Lie bialgebra from an r-matrix 54 6.4 Solutions of the CYBE with spectral parameter 55 6.5 Affine Lie algebras 57 6.5.1 Definition 57 6.5.2 Lie bialgebra structure 59 7 Belavin-Drinfeld classification (II) 60 7.1 Properties of nondegenerate solutions 60 7.2 Meromorphic continuation of $r(z)$ to \mathbb{C} 62 7.3 Proof of the classification theorem 64		5.4	Proof of the classification theorem	44
5.4.3 Proof of part 2) 47 6 Infinite dimensional Lie bialgebras 49 6.1 Infinite Manin triples 49 6.2 Examples 50 6.2.1 The standard structure on Kac-Moody algebras 50 6.3 The CYBE with spectral parameter 51 6.3.1 An example: the Yangian and its dual 51 6.3.2 The CYBE with spectral parameter 53 6.3.3 Construction of a Lie bialgebra from an r-matrix 54 6.4 Solutions of the CYBE with spectral parameter 55 6.5 Affine Lie algebras 57 6.5.1 Definition 57 6.5.2 Lie bialgebra structure 59 7 Belavin-Drinfeld classification (II) 60 7.1 Properties of nondegenerate solutions 60 7.2 Meromorphic continuation of $r(z)$ to \mathbb{C} 62 7.3 Proof of the classification theorem 64			5.4.1 The Cayley transform	44
6 Infinite dimensional Lie bialgebras 49 6.1 Infinite Manin triples 49 6.2 Examples 50 6.2.1 The standard structure on Kac-Moody algebras 50 6.3 The CYBE with spectral parameter 51 6.3.1 An example: the Yangian and its dual 51 6.3.2 The CYBE with spectral parameter 53 6.3.3 Construction of a Lie bialgebra from an r-matrix 54 6.4 Solutions of the CYBE with spectral parameter 55 6.5 Affine Lie algebras 57 6.5.1 Definition 57 6.5.2 Lie bialgebra structure 59 7 Belavin-Drinfeld classification (II) 60 7.1 Properties of nondegenerate solutions 60 7.2 Meromorphic continuation of $r(z)$ to \mathbb{C} 62 7.3 Proof of the classification theorem 64			5.4.2 Proof of part 1) \ldots	45
6.1Infinite Manin triples496.2Examples506.2.1The standard structure on Kac-Moody algebras506.3The CYBE with spectral parameter516.3.1An example: the Yangian and its dual516.3.2The CYBE with spectral parameter536.3.3Construction of a Lie bialgebra from an r-matrix546.4Solutions of the CYBE with spectral556.5Affine Lie algebras576.5.1Definition576.5.2Lie bialgebra structure597Belavin-Drinfeld classification (II)607.1Properties of nondegenerate solutions607.2Meromorphic continuation of $r(z)$ to \mathbb{C} 627.3Proof of the classification theorem64			5.4.3 Proof of part 2)	47
6.1Infinite Manin triples496.2Examples506.2.1The standard structure on Kac-Moody algebras506.3The CYBE with spectral parameter516.3.1An example: the Yangian and its dual516.3.2The CYBE with spectral parameter536.3.3Construction of a Lie bialgebra from an r-matrix546.4Solutions of the CYBE with spectral556.5Affine Lie algebras576.5.1Definition576.5.2Lie bialgebra structure597Belavin-Drinfeld classification (II)607.1Properties of nondegenerate solutions607.2Meromorphic continuation of $r(z)$ to \mathbb{C} 627.3Proof of the classification theorem64	6	Infi	nite dimensional Lie bialgebras	49
6.2Examples506.2.1The standard structure on Kac-Moody algebras506.3The CYBE with spectral parameter516.3.1An example: the Yangian and its dual516.3.2The CYBE with spectral parameter536.3.3Construction of a Lie bialgebra from an r-matrix546.4Solutions of the CYBE with spectral556.5Affine Lie algebras576.5.1Definition576.5.2Lie bialgebra structure597Belavin-Drinfeld classification (II)607.1Properties of nondegenerate solutions607.2Meromorphic continuation of $r(z)$ to \mathbb{C} 627.3Proof of the classification theorem64	-		-	
6.2.1 The standard structure on Kac-Moody algebras506.3 The CYBE with spectral parameter516.3.1 An example: the Yangian and its dual516.3.2 The CYBE with spectral parameter536.3.3 Construction of a Lie bialgebra from an r-matrix546.4 Solutions of the CYBE with spectral556.5 Affine Lie algebras576.5.1 Definition576.5.2 Lie bialgebra structure597 Belavin-Drinfeld classification (II)607.1 Properties of nondegenerate solutions627.3 Proof of the classification theorem64		6.2	-	
6.3 The CYBE with spectral parameter516.3.1 An example: the Yangian and its dual516.3.2 The CYBE with spectral parameter536.3.3 Construction of a Lie bialgebra from an r-matrix546.4 Solutions of the CYBE with spectral parameters556.5 Affine Lie algebras576.5.1 Definition576.5.2 Lie bialgebra structure597 Belavin-Drinfeld classification (II)607.1 Properties of nondegenerate solutions607.2 Meromorphic continuation of $r(z)$ to \mathbb{C} 627.3 Proof of the classification theorem64			•	
6.3.1An example: the Yangian and its dual516.3.2The CYBE with spectral parameter536.3.3Construction of a Lie bialgebra from an r-matrix546.4Solutions of the CYBE with spectral parameters556.5Affine Lie algebras576.5.1Definition576.5.2Lie bialgebra structure597Belavin-Drinfeld classification (II)607.1Properties of nondegenerate solutions627.3Proof of the classification theorem647.3.1Myberg's theorem64		6.3	• •	
6.3.2 The CYBE with spectral parameter536.3.3 Construction of a Lie bialgebra from an r-matrix546.4 Solutions of the CYBE with spectral parameters556.5 Affine Lie algebras576.5.1 Definition576.5.2 Lie bialgebra structure597 Belavin-Drinfeld classification (II)607.1 Properties of nondegenerate solutions607.2 Meromorphic continuation of $r(z)$ to \mathbb{C} 627.3 Proof of the classification theorem647.3.1 Myberg's theorem64				
6.3.3Construction of a Lie bialgebra from an r-matrix546.4Solutions of the CYBE with spectral parameters556.5Affine Lie algebras576.5.1Definition576.5.2Lie bialgebra structure597Belavin-Drinfeld classification (II) 7.1607.2Meromorphic continuation of $r(z)$ to \mathbb{C} 627.3Proof of the classification theorem647.3.1Myberg's theorem64				
6.4Solutions of the CYBE with spectral parameters556.5Affine Lie algebras576.5.1Definition576.5.2Lie bialgebra structure597Belavin-Drinfeld classification (II)607.1Properties of nondegenerate solutions607.2Meromorphic continuation of $r(z)$ to \mathbb{C} 627.3Proof of the classification theorem647.3.1Myberg's theorem64				
parameters 55 6.5 Affine Lie algebras 57 6.5.1 Definition 57 6.5.2 Lie bialgebra structure 59 7 Belavin-Drinfeld classification (II) 60 7.1 Properties of nondegenerate solutions 60 7.2 Meromorphic continuation of $r(z)$ to \mathbb{C} 62 7.3 Proof of the classification theorem 64 7.3.1 Myberg's theorem 64		6.4	-	
6.5.1Definition576.5.2Lie bialgebra structure597Belavin-Drinfeld classification (II)607.1Properties of nondegenerate solutions607.2Meromorphic continuation of $r(z)$ to \mathbb{C} 627.3Proof of the classification theorem647.3.1Myberg's theorem64			-	55
6.5.2Lie bialgebra structure597Belavin-Drinfeld classification (II)607.1Properties of nondegenerate solutions607.2Meromorphic continuation of $r(z)$ to \mathbb{C} 627.3Proof of the classification theorem647.3.1Myberg's theorem64		6.5	Affine Lie algebras	57
7 Belavin-Drinfeld classification (II) 60 7.1 Properties of nondegenerate solutions 60 7.2 Meromorphic continuation of $r(z)$ to \mathbb{C} 62 7.3 Proof of the classification theorem 64 7.3.1 Myberg's theorem 64			6.5.1 Definition	57
7.1Properties of nondegenerate solutions607.2Meromorphic continuation of $r(z)$ to \mathbb{C} 627.3Proof of the classification theorem647.3.1Myberg's theorem64			6.5.2 Lie bialgebra structure \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	59
7.1Properties of nondegenerate solutions607.2Meromorphic continuation of $r(z)$ to \mathbb{C} 627.3Proof of the classification theorem647.3.1Myberg's theorem64	7	Bel	avin-Drinfeld classification (II)	60
7.2Meromorphic continuation of $r(z)$ to \mathbb{C} 627.3Proof of the classification theorem647.3.1Myberg's theorem64	-			
7.3 Proof of the classification theorem647.3.1 Myberg's theorem64				
7.3.1 Myberg's theorem				
				04
7.3.3 Rational and trigonometric r-matrices				

iv

CONTENTS

8	Hop	f algebras	68
	8.1	Definition of Hopf algebras	68
		8.1.1 Finite groups revisited	68
		8.1.2 Coalgebras	69
		-	69
	8.2	Pictorial representation	71
	8.3	Examples of Hopf algebras	73
	8.4	Duality in Hopf algebras	76
	8.5	Deformation Hopf algebras	76
9	Qua	ntized universal enveloping algebras	78
	9.1	Quantized enveloping algebras	78
	9.2	The quantization theorem	80
	9.3		80
	9.4	Coboundary, quasitriangular, triangular Hopf algebras	82
		9.4.1 Coboundary Hopf algebras	82
		9.4.2 (Quasi)triangular Hopf algebras	83
			86
	9.5		87
10	For	mal groups and h-formal groups	90
	10.1	Definition	90
	10.2	Duality	91
	10.3	R-matrices and R-forms	93
		10.3.1 Comodules	93
		10.3.2 Universal R-forms (coquasitriangular structures) \ldots .	94
11	Infi	inite dimensional quantum groups	96
	11.1	The RTT formalism and h-formal groups	96
			96
		11.1.2 The RTT formalism	97
		11.1.3 Examples	98
	11.2	RTT formalism and quantum groups	99
	11.3	Examples	.01
		11.3.1 The Yangian 1	.01
		11.3.2 The dual Yangian 1	.01
		11.3.3 Quantum elliptic algebra	.02
		11.3.4 Quantized affine Lie algebra	.02
12	\mathbf{The}	quantum double 1	04
	12.1	The quantum double	.04
			.10
	12.3	Quasitriangular structure on $U_h(\mathfrak{g})$.11

v

13	Tens	sor categories and quasi-Hopf algebras			114
	13.1	Semigroup categories			114
		13.1.1 Definition			
		13.1.2 Examples			
		13.1.3 Tensor functors			
	13.2	Monoidal categories			
		13.2.1 Units in semigroup categories			119
		13.2.2 MacLane's theorem			
	13.3	Quasi-bialgebras and quasi-Hopf algebras			
		13.3.1 Definition			
		13.3.2 Equivalence of quasi-bialgebras and twists			
		13.3.3 "Nonabelian cohomology"			
14	Bro	ided tensor categories			126
14		Braided monoidal categories			
	14.1	14.1.1 Motivation			
		14.1.2 The braid group			
		14.1.3 Braided tensor functors			
		14.1.4 Braid group representations			
		14.1.5 Symmetric categories			
	149	Quasitriangular Quasi-Hopf algebras			
	14.2	14.2.1 Equivalence of quasitriangular quasi-Hopf algebras			
		14.2.1 Equivalence of quasicitatiguiar quasi-mopt algebras	·	·	199
15	\mathbf{KZ}	equations and the Drinfeld Category			134
	15.1	The KZ equations:			134
		15.1.1 Definition			134
		15.1.2 Link with the CYBE			135
	15.2	Monodromy of the KZ equations			136
		15.2.1 The KZ associator			
		15.2.2 Quasi-Hopf structure			
		15.2.3 Braided (quasitriangular) structure			141
	15.3	The Drinfeld category			144
		Braid group representation			
16	0119	si-Hopf quantized enveloping algebras			146
10		Quasi-Hopf quantized enveloping algebras			
	10.1	16.1.1 Definition			
		16.1.2 Examples			
		16.1.3 Twists			
	16.9	Lie quasibialgebras			$147 \\ 147$
	10.2	16.2.1 Definition			147
		16.2.2 Quantization of Lie quasibialgebras			
		16.2.3 Quasitriangular Lie quasibiligebras			140
		16.2.4 Twists \ldots			149
	16.2	Associators			
	10.0	Associators			
				•	100

16.3.2 Action of twists on Ass(g, Ω) 1 16.4 Classification of quasitriangular quasi-Hopf QUE algebras 1 16.5 The Drinfeld-Kohno theorem 1 16.6 Geometric interpretation of Lie quasibialgebras 1	$\begin{array}{c} 151 \\ 152 \end{array}$
17 Lie associators117.1 Lie associators117.1.1 Definition117.1.2 The space of Lie associators117.2 The Grothendieck-Teichmuller group117.2.1 Definition117.2.2 The action of $GT_1(k)$ on completed braid groups117.2.3 Drinfeld's conjecture1	157 159 159 159 163
18 Fiber functors and Tannaka-Krein duality 1 18.1 Tensor categories 1 18.2 Fiber functor 1 18.2.1 First example 1 18.2.2 Tannaka-Krein duality 1 18.2.3 Tannaka-Krein duality for bialgebras 1	$165 \\ 165 \\ 167 \\$
19 Quantization of finite dimensional Lie bialgebras 1 19.1 Quantization of the Drinfeld double 1 19.1.1 The Drinfeld category 1 19.1.2 The forgetful functor 1 19.1.3 The Verma modules 1 19.1.4 Tensor structure on the forgetful functor 1 19.1.5 Quantization of g 1 19.2 Quantization of finite-dimensional Lie bialgebras 1 19.3 Quasitriangular quantization 1 19.4 Quantization of r-matrices 1	170 171 171 172 176 176 183
20 Universal constructions 1 20.1 Cyclic categories 1 20.1.1 Definition 1 20.1.2 Basic notions related to cyclic categories 1 20.1.3 Linear algebraic structures 1 20.2 Universal constructions 1 20.2.1 Acyclic tensor calculus 1	$185 \\ 185 \\ 186 \\ 188 $
21.1 Statement of the theorem	

CONTE	INTS
-------	------

	21.6 Quantization of Poisson-Lie groups	03
22	DEQUANTIZATION AND THE EQUIVALENCE2022.1 THE QUANTUM DOUBLE IN A SYMMETRIC222.2 Dequantization2	
1	KZ ASSOCIATOR AND MULTIPLE201.1 The multiple zeta function	10
2	Solutions to Problems and Exercises 22	14

viii

Introduction

Quantum groups is a new exciting area of mathematics, which originated from mathematical physics (field theory, statistical mechanics), and developed greatly over the last 15 years. It is connected with many other, old and new, parts of mathematics, and remains an area of active, fruitful research today.

This book arose from a graduate course on quantum groups given by the first author at Harvard in the Spring of 1997, when it was written down in an extended and improved form by the second author.

The purpose of this book is to give an elementary introduction to the aspect of the theory of quantum groups which has to do with the notion of quantization. It is written for a general mathematical audience: we tried to do everything from scratch, assuming only the basic algebra and geometry.

The first seven lectures are devoted to the theory of quasiclassical objects which are relevant in the theory of quantum groups: Poisson manifolds (algebras), Poisson-Lie groups, Lie bialgebras, the classical Yang-Baxter equation and its solutions (classical r-matrices). The material here is largely standard. At the end of this part we consider in detail the classification of classical r-matrices for simple Lie algebras, given by Belavin and Drinfeld. Our exposition in Lectures 1-7 is similar to that of Chari and Pressley [CP].

In Lectures 8-12, we discuss the definition and properties of the main characters in our story – bialgebras and Hopf algebras. Here we discuss quantum R-matrices, the double construction, and the notion of quantization of Lie bialgebras. We formulate the results about existence of quantization, anticipated by Drinfeld [Dr1] and proved recently in [EK1].

In Lectures 13-14 we discuss monoidal categories. This material is standard, and contained in the book of Maclane [Mac], as well as in several textbooks on quantum groups. We give it in a form suitable for subsequent exposition. In particular, we stress the importance of non-symmetric and non-strict monoidal categories.

In Lectures 15-16 we discuss quasi-bialgebras and quasi-Hopf algebras, which are algebraic counterparts of non-strict monoidal categories, in the same sense as bialgebras and Hopf algebras are algebraic counterparts of strict monoidal categories. We consider the main properties of quasi-bialgebras, and the simplest examples of them. Then we study quasitriangular quasi-Hopf algebras, the Knizhnik-Zamilodchikov equation and the corresponding quasi-Hopf algebra, define and study equivalence by a twist, and cite Drinfeld's classification result. From this result, we deduce the Drinfeld-Kohno theorem about the monodromy of the Knizhik-Zamolodchikov equations.

In Lecture 17 we introduce Lie associators and the Grothendieck-Teichmuller group, give their main properties, and define, following Drinfeld, the free, transitive action of the Grothendieck-Teichmuller group on the space of Lie associators.

In Lecture 18 we discuss the Tannaka-Krein philosophy for tensor categories, which allows one to get a better understanding of the notion of a bialgebra and a quasitriangular bialgebra.

In Lectures 19-22 we describe the method of quantization of Lie bialgebras developed recently in [EK1, EK2]. This part is the culmination point of the book, where many methods and notions of the previous chapters come together. In this part, we prove that any Lie bialgebra can be quantized, and that this quantization is given by a universal, functorial construction.

Finally, in the Appendix we give some applications of the material of the book to number theory (counting independent values of zeta-functions). The contents of the Appendix is discussed somewhat differently in [Kass].

Now a few words about the nature of this book. It is written in the spirit of lecture notes rather than that of a serious monograph. Our goal was not to cover the maximal amount of material, nor to present it in the most complete form, but to expose a number of deep and interesting results in a reader-friendly way. In view of this, we did not discuss many important parts of the theory of quantum groups (representation theory, quantum groups at roots of unity, knot invariants, Drinfeld new realizations, relations to q-special functions, etc.), and did not give many basic references. Luckily, there exist many textbooks on quantum groups [Kass, CP, ShSt, Jos, J, Lu, Maj], where this missing information can be readily found.

Two unusual features of this book, compared to other textbooks, are extensive use of pictorial language for writing and checking algebraic relations, and over fifty problems and exercises (with solutions).

We hope that these features will facilitate active reading of the book, and make it accessible to a wide audience.

The authors would like to thank the Harvard mathematics department for hospitality and the participants of the quantum groups course in the Spring of 1997 for many useful discussions. They are very grateful to Ping Xu and

INTRODUCTION

Eric Vasserot for careful reading of the manuscript and many helpful remarks. Above all, they are grateful to Tanya and Christelle for their endless patience and support.

۰