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1

Introduction

Rational lattices occur naturally in many areas of mathematics, such as num-
ber theory, geometry, combinatorics, representation theory, discrete mathematics,
finite groups and Lie theory.

The main goal of this book is to explain methods for construction and analysis
of positive definite rational lattices and their finite groups of isometries.

It seems that many lattices of great interest are related to finite groups and
vice versa. One thinks of root lattices, the Barnes-Wall lattices, the Leech lattice
and others which occur as sublattices or overlattices of these. The Leech lattice is
closely related to twenty of the twenty-six sporadic simple groups. Many lattices
with relatively high minimum norms have interesting finite isometry groups.

Materials in this book are similar to that in graduate courses we gave during
the 2000s decade at the University of Michigan in Ann Arbor, USA and Zhejiang
University in Hangzhou, China. We present group theory and lattice theory as
closely interrelated subjects.

Many topics in the theory of lattices and the theory of groups shall be treated
from first principles and proofs will be self-contained. Our presentation is more
classroom style or conversational than encyclopedic. We try to provide clear intro-
ductions, give examples and indicate directions. If a full treatment would be long
and is otherwise available in publications, we may refer to outside sources.

We shall assume the basic knowledge in graduate algebra and introduce more
specialized results as we go along. Elementary linear algebra (Jordan and rational
canonical forms, multilinear algebra and tensors, modules over a principal ideal
domain) is necessary. Elementary representation theory for groups and algebras
over fields is assumed, e.g., [23, 52]. Integral representation theory is less well-
known, so we shall cover some basics on this topic. Group cohomology theory will
be quoted as needed. The knowledge of root systems for the finite dimensional Lie
algebras would be helpful but not absolutely necessary.

We thank the Center for Mathematical Research at Zhejiang University in
Hangzhou, China, for an invitation to teach a course on Groups and Lattices in
winter, 2008. Also, we thank the University of Michigan and the National Science
Foundation of the United States for financial support during this period.



2 1 Introduction

1.1 Outline of the book

The goal is an introduction to groups, positive definite rational lattices and their
interactions.

Chapter 2 covers the basic algebra associated to rational lattices, such as inte-
grality, the dual, Gram matrices and relations between a lattice and a sublattice.
Definitions for quadratic spaces and their isometries are treated with some gener-
ality. Particular attention is paid to involutions.

Chapter 3 deals with rational lattices invariant under a given finite group and
with finiteness of the isometry group of a given rational lattice. An orthogonal
decomposition of a lattice into orthogonally indecomposable summands indicates
certain decompositions of its isometry group.

Chapter 4 deals with root lattices of types ADE. These lattices and closely
related ones occur widely and are an important part of basic vocabulary in this
subject. We give detailed analysis of these lattices, their duals and isometry groups.

Chapter 5 discusses the two inequalities of Hermite and Minkowski which say
that, given integers n and d, there is a number f(n, d) so that a lattice of rank n
and determinant d has a nonzero vector such that the absolute value of its norm
is at most f(n, d). This technique is important for starting structure analyses of
lattices for which n and d are not too large. An application is given to uniqueness
of the exceptional root lattices E6, E7 and E8 and other cases.

Chapter 6 introduces elementary theory of error correcting codes and their role
in building lattices. Applications are given to root lattices (e.g. several different
constructions of E8).

Chapter 7 begins with a review of representation theory of finite groups then
specializes to extraspecial p-groups and groups obtained from them by extending
upwards by subgroups of the outer automorphism group. In particular, we con-
struct the Bolt-Room-Wall groups. Such groups play important roles in the theory
of lattices, as explained in the next chapter.

Chapters 8 and 9 are about an inductive construction of the family of Barnes-
Wall lattices, in ranks 2d. We sketch how to get the rank 2d case by starting with
the rank 2d−1 case and using integral representation theory of a dihedral group of
order 8. The concepts of 2/4-generation, 3/4-generation and commutator density
are developed in generality then specialized to the Barnes-Wall constructions. Ap-
plications are given, including a description of minimal vectors and indication of
how the Reed-Muller binary codes occur within the Barnes-Wall lattices.

Chapter 10 is about the even unimodular integral lattices in dimensions 8, 16
and 24. The number of isometry types are, respectively, 1, 2 and 24. We describe
many of these and devote a lot of attention to the Golay code and the Leech lattice,
the unique even unimodular integral lattices in dimension 24 which has no norm
2 vectors. Its isometry group is a remarkable finite groups whose quotient by the
center is simple. We sample the rich combinatorics and group theory.

Chapter 11 gives a new treatment of existence and uniqueness for the Leech
lattice. It has many logical advantages over the past treatments. For example, it
implies existence and properties of the Golay code and Mathieu groups, rather
than using these respective theories.
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An appendix gives a table of orders for the finite simple groups.
Three articles of this author are reprinted (one in revised form) to supplement

treatments in the text.

1.2 Suggestions for further reading

Chapter 2: Bilinear forms, quadratic forms and their isometry groups
For basics about integer quadratic forms, see [17, 55, 58].
Chapter 3: General results on finite groups and invariant lattices
There are many good texts on basic representation theory of finite groups over

fields, e.g. [1, 2, 23, 24, 25, 26, 29, 30, 52]. The term “modular representation the-
ory” refers to representations of a finite group over fields of positive characteristic
which divides the group order. In this case, the group algebra has a nonzero radical
and finite dimensional modules are not completely reducible. Integral representa-
tion theory is not as widely treated as representation theory over fields. Aspects
are treated in the abovementioned texts.

The text [59] studies many interesting integral lattices which have strong con-
nections to Lie algebras and finite groups.

Chapter 4: Root lattices of types A, D, E
In this text, consider the classification of root systems as given. For an ax-

iomatic treatment, see [11, 50]; the appendices in [11] are quite useful and have
become a standard reference.

Chapter 5: Hermite and Minkowski functions
We emphasize the Hermite function because in low ranks, it gives better results

than the Minkowski function. For larger ranks, the Minkowski function is much
better than the Hermite function, but does not seem to be strong enough for
practical use in classification results, such as the ones at the end of this chapter.
For a proof of the Minkowski result, see [80].

We have wondered if there is a generalization of such functions to the following
situation. We are given two rational lattices L and M , where rank(M) ≤ rank(L).
For each integer r ≥ 1, one would like some estimate of the number of embeddings
of
√
rM into L. Perhaps a sharper question would get a better answer, such as

one about preferred bases of M : given a finite set of vectors with Gram matrix G
can one estimate the number of embeddings in L of a set of vectors with Gram
matrix rG, for r ≥ 1. Some kinds of estimate in the case of L a rootless rank 24
even unimodular lattice andM the E8-lattice might be useful for a new uniqueness
proof of the Leech lattice along the lines of [38].

The problem of determining the minimum norm of a given lattice is generally
hard. Some techniques are given in [21, 57].

Chapter 6: Constructions of lattices by use of codes
For basic coding theory, see [64, 68, 77, 79] and for an extensive report, see [69].

This text gives only the simplest constructions of lattices from sublattices and glue
codes. For a greater range of such constructions, see the systematic expositions in
[21].



4 1 Introduction

Chapter 7: Group theory and representations
Extraspecial p-groups got a lot of attention from the work of [47] and they

frequently played roles throughout the development of finite group theory and the
classification of simple groups. For example, see [31, 37, 51]. In [74], Theorem B
of [47] is used a lot.

The result on character values of an element in a BRW group (7.4.6) was
reported in [35] but it may be older; we do not know the earliest references.

Chapter 8: Overview of the Barnes-Wall Lattices
This short exposition shows that the Barnes-Wall series involves some familiar

lattices, covered earlier in the text. The commutator density theory from [40]
seems to be new. There are homological issues for representations of a group over
Z which are trivial for the corresponding rational representations. For background
on homological algebra, see [6, 46, 49, 70].

Chapter 9: Construction and properties of the Barnes-Wall lattices
These lattices were first described in [5]. In fact, [5] describes more lattices than

we consider in this book. Their lattices depend on a set of parameters. For each of
those lattices, the isometry group has a subgroup G for which G/O2(G) is some
GL(m, 2). Certain values of the parameters give “the” Barnes-Wall lattices, the
ones we treat in this book, and for these lattices, the BRW group is properly larger
than the preceding group G. Shortly after [5] appeared, there came several articles
describing lattices like Barnes-Wall for odd primes and their groups [7, 8, 9].

The Barnes-Wall lattices were discovered independently in [15], which defines
each as an ascending chain of lattices, depending on a sequence of Reed-Muller bi-
nary error-correcting codes. The authors give a lot of group theoretic information.
See also the earlier articles [12, 13, 14]. Their viewpoint is more group-theoretic
than that of [5].

Chapter 10: Even unimodular lattices in small dimensions
The classifications of rank 2 lattices and even unimodular lattices of ranks

8, 16 and 24 are well known. In other low dimensions, there are a few results
for cases of interest. See the books [21] and [58] and the article [44]. Some such
characterizations are found in Subsection 5.3.

Chapter 11: Pieces of eight
The early constructions of the Leech lattice were done by first creating a Golay

code, then using it to make glue vectors over a square lattice with minimum norm
4 [20, 62]. Uniqueness of the Leech lattice is deduced from uniqueness of the Golay
code. In [37], this program is described in detail. The approach of Borcherds [10]
is based on hyperbolic lattices and so is quite different. He proves existence of a
rootless Niemeier lattice but his proof indicates no properties of such a lattice.
Uniqueness is proven using analysis of roots in the hyperbolic overlattice of rank
26. The Pieces of Eight [38] approach gets structure theory of the Leech lattice and
its isometry group by the uniqueness viewpoint. The ideas in [38] led this author
to [40].
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1.3 Notations, background, conventions

The conventions in this book will be similar to that of [31]. However, we shall use
mostly left actions of groups and rings, though in a few situations we use right
actions.

Since we use n-tuples a lot, it is often more convenient to write row vectors for
arguments with linear combinations, whereas with matrix work, we may apply a
matrix on the left to a column vector. Conjugation and commutation follow the
style of [31], e.g. xy means y−1xy and [x, y] = x−1y−1xy so that xy = x[x, y].

We tend to write A ≤ B when A is a subobject of B in an algebraic category
(groups, rings, etc. ).

Set theoretic notations include A \B for set-theoretic difference, i.e., {x ∈ A |
x /∈ B}, A+ B for Boolean sum (A + B := A ∪ B \ A ∩ B = A \B ∪B \ A) and
A �B for disjoint union.

See the book index for a list of notations which occur in the text.


