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Preface

The marriage of geometry and analysis, in particular non-linear differential
equations, has been very fruitful. An early deep application of geometric analysis
is the celebrated solution by Shing-Tung Yau of the Calabi conjecture in 1976. In
fact, Yau together with many of his collaborators developed important techniques
in geometric analysis in order to solve the Calabi conjecture. Besides solving
many open problems in algebraic geometry such as the Severi conjecture, the
characterization of complex projective varieties, and characterization of certain
Shimura varieties, the Calabi-Yau manifolds also provide the basic building blocks
in the superstring theory model of the universe. Geometric analysis has also
been crucial in solving many outstanding problems in low dimensional topology,
for example, the Smith conjecture, and the positive mass conjecture in general
relativity.

Geometric analysis has been intensively studied and highly developed since
1970s, and it is becoming an indispensable tool for understanding many parts
of mathematics. Its success also brings with it the difficulty for the uninitiated
to appreciate its breadth and depth. In order to introduce both beginners and
non-experts to this fascinating subject, we have decided to edit this handbook of
geometric analysis. Each article is written by a leading expert in the field and will
serve as both an introduction to and a survey of the topics under discussion. The
handbook of geometric analysis is divided into several parts, and this volume is
the second part.

Shing-Tung Yau has been crucial to many stages of the development of geo-
metric analysis. Indeed, his work has played an important role in bringing the
well-deserved global recognition by the whole mathematical sciences community
to the field of geometric analysis. In view of this, we would like to dedicate this
handbook of geometric analysis to Shing-Tung Yau on the occasion of his sixtieth
birthday.

Summarizing the main mathematical contributions of Yau will take many pages
and is probably beyond the capability of the editors. Instead, we quote several
award citations on the work of Yau.

The citation of the Veblen Prize for Yau in 1981 says: “We have rarely had the
opportunity to witness the spectacle of the work of one mathematician affecting, in
a short span of years, the direction of whole areas of research.... Few mathemati-
cians can match Yau’s achievements in depth, in impact, and in the diversity of
methods and applications.”
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In 1983, when Yau was awarded a Fields medal, L. Nirenberg described Yau’s
work up to that point:

“Yau has done extremely deep work in global geometry and elliptic partial dif-
ferential equations, including applications in three-dimensional topology and in
general relativity theory. He is an analyst’s geometer (or geometer’s analyst) with
remarkable technical power and insight. He has succeeded in solving problems on
which progress had been stopped for years.”

More than ten years later, Yau was awarded the Carfoord prize in 1994, and
the citation of the award says:

“The Prize is awarded to ... Shing-Tung Yau, Harvard University, Cambridge,
MA, USA, for his development of mon-linear techniques in differential geometry
leading to the solution of several outstanding problems.

Thanks to Shing-Tung Yau’s work over the past twenty years, the role and un-
derstanding of the basic partial differential equations in geometry has changed and
expanded enormously within the field of mathematics. His work has had an impact
on areas of mathematics and physics as diverse as topology, algebraic geometry,
representation theory, and general relativity as well as differential geometry and
partial differential equations. Yau is a student of legendary Chinese mathemati-
ctan Shiing-Shen Chern, for whom he studied at Berkeley. As a teacher he is very
generous with his ideas and he has had many students and also collaborated with
many mathematicians.”

In 2010, Yau was awarded the Wolf Prize for his lifetime achievements in geo-
metric analysis and mathematical physics, and the award citation probably gives
one of the best summaries of his major works up to 2010:

“Shing-Tung Yau (born 1949, China) has linked partial differential equations,
geometry, and mathematical physics in a fundamentally new way, decisively shap-
ing the field of geometric analysis. He has developed new analytical tools to solve
several difficult nonlinear partial differential equations, particularly those of the
Monge-Ampere type, critical to progress in Riemannian, Kahler and algebraic
geometry and in algebraic topology, that radically transformed these fields. The
Calabi- Yau manifolds, as these are known, a particular class of Kahler manifolds,
have become a cornerstone of string theory aimed at understanding how the ac-
tion of physical forces in a high-dimensional space might ultimately lead to our
four-dimensional world of space and time. Prof.Yau’s work on T-duality is an
important ingredient for mirror symmetry, a fundamental problem at the interface
of string theory and algebraic and symplectic geometry. While settling the positive
mass and energy conjectures in general relativity, he also created powerful analyti-
cal tools, which have broad applications in the investigation of the global geometry
of space-time.

Prof. Yau’s eigenvalue and heat kernel estimates on Riemannian manifolds count
among the most profound achicvements of analysis on manifolds. He studied mini-
mal surfaces, solving several classical problems, and then used his results, to create
a novel approach to geometric topology. Prof. Yau has been exceptionally productive
over several decades, with results radiating onto many areas of pure and applied
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mathematics and theoretical physics.

In addition to his diverse and fundamental mathematical achievements, which
have inspired generations of mathematicians, Prof.Yau has also had an enormous
impact, worldwide, on mathematical research, through training an extraordinary

number of graduate students and establishing several active mathematical research
centers.”

Indeed, he has already trained more than 60 Ph.D. students.

We wish Yau a happy sixtieth birthday and continuing success in many years
to come!

Lizhen Ji

Peter Li
Richard Schoen
Leon Simon
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