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Preface

On March 28-30, 1996, International Press, the National Science Foundation,
and the University of California at Irvine sponsored the First Annual Interna-
tional Press Lecture Series, held on the Irvine campus. The inaugural speaker
for this event was Professor Cliff Taubes of Harvard University who delivered
three lectures on “Seiberg-Witten and Gromov Invariants.” In addition, there
were ten one-hour lectures delivered by some of the foremost researchers in the
field of four dimensional smooth and symplectic topology. Volume I of these
proceedings contains articles based on six of those lectures.

The present volume consists of four papers by Taubes comprising the com-
plete proof of his remarkable result relating the Seiberg-Witten and Gromov
invariants of symplectic four manifolds. The first paper “SW ⇒ Gr: From
the Seiberg-Witten equations to pseudo-holomorphic curves” appeared in print
in 1996 in the Journal of the American Mathematical Society. The remain-
ing three papers appeared in the Journal of Differential Geometry. See the
references below.∗

It is especially gratifying to have this magnificent work collected together in
one volume. Thanks are due to Cliff Taubes for agreeing to this arrangement,
to the aforementioned journals for their permission to reprint the first two
articles, and to Hugh Rutledge of International Press for his efforts in making
this possible.

The idea for a distinguished lecture series was conceived by Peter Li and
S.-T. Yau. The first conference was organized by Ronald J. Stern and Richard
Wentworth, with the important assistance of Julie Crosby and the Department
of Mathematics at UC-Irvine. We would like to thank the invited speakers and
the audience of over 200 research mathematicians whose participation made
this conference a great success.
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