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Foreword

A conference, on the general theme of “Elliptic curves and modular forms”,
was held in the Mathematics Department and the Institute of Mathematical
Sciences of The Chinese University of Hong Kong from December 18-21, 1993.
The impetus for organizing the conference arose from Andrew Wiles’ deep and
spectacular work on the celebrated conjecture that every elliptic curve over Q
is modular, although only some of the lectures at the conference were specif-
ically related to this theme. At the time of the conference, the difficulties in
the last hurdle in Wiles’ work (the proof of the conjectural upper bound for
the order of the Selmer group attached to the symmetric square of a modular
form) had still not been overcome. However, the optimism shared by all at
the conference that is was only a matter of time until the proof would become
complete has happily been borne out by subsequent events. It is now history
that Wiles himself, assisted by R. Taylor, found a beautiful proof of the desired
upper bound. As a result, we now know today the remarkable fact that every
semi-stable elliptic curve over Q is modular. Not only is this result revolution-
ary in its own right for the study of the arithmetic of these elliptic curves, but
it has the added bonus that it provides at last a proof of Fermat’s last theorem,
thanks to the earlier work of Frey, Ribet and others. We are grateful to H.
Darmon, F. Diamond and R. Taylor for their kind permission to publish their
beautiful survey article on Wiles’ work as the first article in this second edition.
During the conference itself, lectures were given by John Coates, Noam Elkies,
Matthias Flach, Jean-Marc Fontaine, Gerhard Frey, Dick Gross, Victor Koly-
vagin, Ken Ribet, Karl Rubin, Jean-Pierre Serre, John Tate, Richard Taylor,
and Don Zagier. The present short volume is a mixture of the texts of some
of these lectures, together with a number of recent articles related to the gen-
eral theme of the conference. Finally, the organizers of the conference wish to
express their warmest thanks to Professor Charles Kao, Vice-Chancellor, and
to Professor S.Y. Cheng, Chairman of the Mathematics Department, and Dr.
K.W. Leung, of The Chinese University of Hong Kong for their support and as-
sistance throughout the preparation and running of the conference. Finally, and
most importantly, the organizers wish to express their gratitude to The Chinese
University of Hong Kong, the Ho Sin Hang Education Endowment Fund, the
Lee Hysan Foundation Limited, the Pei Hua Education Foundation Limited,
and the Sing Ho Yu Foundation for their generous financial support for the
conference.

John Coates, Cambridge University
Shing-Tung Yau, Director

Institute of Mathematical Sciences
The Chinese University of Hong Kong



Fermat’s Last Theorem

HENRI DARMON
Department of Mathematics, McGill University, Montreal, QC
Canada H3A 2K6

FRED DIAMOND
Departament of Mathematics, MIT, 77 Massachusetts Avenue,
Camridge, MA 02139, USA

RICHARD TAYLOR
Departament of Mathematics, Harvard University, 1 Oxford Street,
Cambridge, MA 02138, USA

The authors would like to give special thanks to N. Boston, K. Buzzard, and
B. Conrad for providing so much valuable feedback on earlier versions of this
paper. They are also grateful to A. Agboola, M. Bertolini, B. Edixhoven, J.
Fearnley, B.H. Gross, R. Gross, L. Guo, F. Jarvis, H. Kisilevsky, E. Liverance,
J. Manoharmayum, K. Ribet, D. Rohrlich, M. Rosen, R. Schoof, J.-P. Serre,
C. Skinner, D. Thakur, J. Tilouine, J. Tunnell, A. Van der Poorten, and L.
Washington for their helpful comments.

Darmon thanks the members of CICMA and of the Quebec-Vermont Num-
ber Theory Seminar for many stimulating conversations on the topics of this
paper, particularly in the Spring of 1995. For the same reason Diamond is
grateful to the participants in an informal seminar at Columbia University in
1993-94, and Taylor thanks those attending the Oxford Number Theory Semi-
nar in the Fall of 1995.

Parts of this paper were written while the authors held positions at other
institutions: Darmon at Princeton, Diamond at Cambridge and the Institute
for Advanced Study, and Taylor at Cambridge and Oxford. During some of the
period, Diamond enjoyed the hospitality of Princeton University, and Taylor
that of MIT. The writing of this paper was also supported by research grants
from NSERC (Darmon), EPSRC # GR/J9461 and NSF # DMS 9304580 (Di-
amond) and by an advanced fellowship from EPSRC (Taylor).

This article owes everything to the ideas of Wiles, and the arguments pre-
sented here are fundamentally his [W3], though they include both the work
[TW] and several simplifications to the original arguments, most notably that
of Faltings. In the hope of increasing clarity, we have not always stated theo-
rems in the greatest known generality, concentrating instead on what is needed
for the proof of the Shimura-Taniyama conjecture for semi-stable elliptic curves.
This article can serve as an introduction to the fundamental papers [W3] and
[TW], which the reader is encouraged to consult for a different, and often more
in-depth, perspective on the topics considered. Another useful more advanced
reference is the article [Di2] which strengthens the methods of [W3] and [TW]
to prove that every elliptic curve that is semistable at 3 and 5 is modular.



For the reprinting of this paper the only changes we have made are to
correct a few typos. We have not updated the material to take account of
recent developments in the subject, most notably:

e F. Diamond, The Taylor- Wiles construction and multiplicity one, Invent.
Math., 128 (1997), 379-391 gives a simplification to the arguments which
we would have incorporated into this exposition if we were writing it
today.

e Some progress has been made on conjecture 3.13 for small primes. See
N. Shepherd-Barron and R. Taylor, Mod 2 and mod 5 icosahedral repre-
sentations, J. Amer. Math. Soc., 10 (1997), 283-298.

e The Shimura-Taniyama conjecture is now known for elliptic curves with
conductor not divisible by 27. See B. Conrad, F. Diamond, R. Tay-
lor, Modularity of certain potentially crystalline Galois representations,
in preparation.
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Introduction

Fermat’s Last Theorem

Fermat’s Last Theorem states that the equation
" +yt=2", zYyz#0

has no integer solutions when n is greater than or equal to 3. Around 1630,
Pierre de Fermat claimed that he had found a “truly wonderful” proof of this
theorem, but that the margin of his copy of Diophantus’ Arithmetica was too
small to contain it:

“Cubum autem in duos cubos, aut quadrato quadratum in duos
quadrato quadratos, et generaliter nullam in infinitum ultra qua-
dratum potestatem in duos ejusdem nominis fas est dividere; cujus
rei demonstrationem mirabile sane detexi. Hanc marginis exiguitas
non caperet.”

Among the many challenges that Fermat left for posterity, this was to prove the
most vexing. A tantalizingly simple problem about whole numbers, it stood
unsolved for more than 350 years, until in 1994 Andrew Wiles finally laid it to
rest.

Prehistory: The only case of Fermat’s Last Theorem for which Fermat actu-
ally wrote down a proof is for the case n = 4. To do this, Fermat introduced
the idea of infinite descent which is still one the main tools in the study of Dio-
phantine equations, and was to play a central role in the proof of Fermat’s Last
Theorem 350 years later. To prove his Last Theorem for exponent 4, Fermat
showed something slightly stronger, namely that the equation z# +y* = 22 has
no solutions in relatively prime integers with zyz # 0. Solutions to such an
equation correspond to rational points on the elliptic curve v = u® —4u. Since
every integer n > 3 is divisible either by an odd prime or by 4, the result of
Fermat allowed one to reduce the study of Fermat’s equation to the case where
n = £ is an odd prime.

In 1753, Leonhard Euler wrote down a proof of Fermat’s Last Theorem for
the exponent £ = 3, by performing what in modern language we would call
a 3-descent on the curve z° + y3 = 1 which is also an elliptic curve. Euler’s
argument (which seems to have contained a gap) is explained in [Edw], ch. 2,
and [Dicl], p. 545.

It took mathematicians almost 100 years after Euler’s achievement to han-
dle the case ¢ = 5; this was settled, more or less simultaneously, by Gustav
Peter Lejeune Dirichlet [Dir] and Adrien Marie Legendre [Leg] in 1825. Their
elementary arguments are quite involved. (Cf. [Edw], sec. 3.3.)

In 1839, Fermat’s equation for exponent 7 also yielded to elementary meth-
ods, through the heroic efforts of Gabriel Lamé. Lamé’s proof was even more
intricate than the proof for exponent 5, and suggested that to go further, new
theoretical insights would be needed.

The work of Sophie Germain: Around 1820, in a letter to Gauss, Sophie
Germain proved that if £ is a prime and ¢ = 2£+1 is also prime, then Fermat’s
equation zf + y¢ = 2¢ with exponent £ has no solutions (z,y, z) with zyz # 0
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(mod £). Germain’s theorem was the first really general proposition on Fer-
mat’s Last Theorem, unlike the previous results which considered the Fermat
equation one exponent at a time.

The case where the solution (z,y, 2) to z¢ + y* = 2¢ satisfies zyz # 0 (mod
£) was called the first case of Fermat’s Last Theorem, and the case where /¢
divides zyz, the second case. It was realized at that time that the first case
was generally easier to handle: Germain’s theorem was extended, using similar
ideas, to cases where k£ + 1 is prime and k is small, and this led to a proof that
there were no first case solutions to Fermat’s equation with prime exponents
£ < 100, which in 1830 represented a significant advance. The division between
first and second case remained fundamental in much of the later work on the
subject. In 1977, Terjanian [Te] proved that if the equation z2¢ + y2¢ = 2%¢ has
a solution (z,y, z), then 2¢ divides either z or y, i.e., “the first case of Fermat’s
Last Theorem is true for even exponents”. His simple and elegant proof used
only techniques that were available to Germain and her contemporaries.

The work of Kummer: The work of Ernst Eduard Kummer marked the
beginning of a new era in the study of Fermat’s Last Theorem. For the first
time, sophisticated concepts of algebraic number theory and the theory of L-
functions were brought to bear on a question that had until then been addressed
only with elementary methods. While he fell short of providing a complete
solution, Kummer made substantial progress. He showed how Fermat’s Last
Theorem is intimately tied to deep questions on class numbers of cyclotomic
fields which are still an active subject of research. Kummer’s approach relied
on the factorization

(+y)(e+Cy) - (z+ ¢y =2*

of Fermat’s equation over the ring Z[(] generated by the £th roots of unity. One
observes that the greatest common divisor of any two factors in the product on
the left divides the element (1 — {;), which is an element of norm £. Since the
product of these numbers is a perfect ¢-th power, one is tempted to conclude
that (z+vy),..., (2:+Cf_1y) are each ¢-th powers in the ring Z[(g] up to units in
this ring, and up to powers of (1 — ;). Such an inference would be valid if one
were to replace Z[(g] by Z, and is a direct consequence of unique factorization
of integers into products of primes. We say that a ring R has property UF
if every non-zero element of R is uniquely a product of primes, up to units.
Mathematicians such as Lamé made attempts at proving Fermat’s Last Theo-
rem based on the mistaken assumption that the rings Z[({,] had property UF.
Legend even has it that Kummer fell into this trap, although this story now
has been discredited; see for example [Edw], sec. 4.1. In fact, property UF is
far from being satisfied in general: one now knows that the rings Z[(,] have
property UF only for £ < 23 (cf. [Wa), ch. 1).

It turns out that the full force of property UF is not really needed in the
applications to Fermat’s Last Theorem. Say that a ring R has property U F; if
the following inference is valid:

ab = 2%, and ged(a,b) =1 = a and b are £th powers up to units of R.

If a ring R has property UF, then it also has property UF}, but the converse
need not be true. Kummer showed that Fermat’s last theorem was true for
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exponent £ if Z[(,] satisfied the property UFy (cf. [Wa]). The proof is far from
trivial, because of difficulties arising from the units in Z[{] as well as from the
possible failure of property UF'. (A number of Kummer’s contemporaries, such
as Cauchy and Lamé, seem to have overlooked both of these difficulties in their
attempts to prove Fermat’s Last Theorem.)

Kummer then launched a systematic study of the property UF; for the
rings Z[(¢]. He showed that even if Z[(, failed to have unique factorization, it
still possessed unique factorization into prime ideals. He defined the ideal class
group as the quotient of the group of fractional ideals by its subgroup consisting
of principal ideals, and was able to establish the finiteness of this class group.
The order of the class group of Z[(,], denoted hg, could be taken as a measure
of the failure of the ring Z[{g] to satisfy UF'. It was rather straightforward to
show that if £ did not divide hy, then Z[({,] satisfied the property UFj. In this
case, one called £ a regular prime. Kummer thus showed that Fermat’s last
theorem is true for exponent £ if £ is a regular prime.

He did not stop here. For it remained to give an efficient means of computing
hg, or at least an efficient way of checking when £ divides hy. The class number
h¢ can be factorized as a product

he = hihy,

where k] is the class number of the real subfield Q(¢¢)*, and h_{ is defined as
he/hf . Essentially because of the units in Q(()*, the factor h; is somewhat
difficult to compute, while, because the units in Q({;)* generate the group of
units in Q(¢¢) up to finite index, the term h, can be expressed in a simple
closed form. Kummer showed that if £ divides h;", then £ divides h, . Hence, £
divides hy if and only if £ divides h, . This allowed one to avoid the difficulties
inherent in the calculation of k. Kummer then gave an elegant formula for h;
by considering the Bernoulli numbers B,,, which are rational numbers defined

by the formula
T B, ,
o D Bl

He produced an explicit formula for the class number b, , and concluded that if
£ does not divide the numerator of By;, for 1 < i < (£ —3)/2, then £ is regular,
and conversely.

The conceptual explanation for Kummer’s formula for h, lies in the work
of Dirichlet on the analytic class number formula, where it is shown that h;
can be expressed as a product of special values of certain (abelian) L-series

L(s,x) = )_ x(n)n™*
n=1

associated to odd Dirichlet characters. Such special values in turn can be
expressed in terms of certain generalized Bernoulli numbers By, which are
related to the Bernoulli numbers B; via congruences mod £. (For more details,
see [Wa].)

These considerations led Kummer to initiate a deep study relating congru-
ence properties of special values of L-functions and of class numbers, which was
to emerge as a central concern of modern algebraic number theory, and was to
reappear — in a surprisingly different guise — at the heart of Wiles’ strategy for
proving the Shimura-Taniyama conjecture.
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Later developments: Kummer’s work had multiple ramifications, and led to
a very active line of enquiry pursued by many people. His formulae relating
Bernoulli numbers to class numbers of cyclotomic fields were refined by Kenneth
Ribet [R1], Barry Mazur and Andrew Wiles [MW], using new methods from the
theory of modular curves which also play a central role in Wiles’ more recent
work. (Later Francisco Thaine [Th] reproved some of the results of Mazur
and Wiles using techniques inspired directly from a reading of Kummer.) In a
development more directly related to Fermat’s Last Theorem, Wieferich proved
that if £2 does not divide 2~ — 1, then the first case of Fermat’s Last Theorem
is true for exponent ¢. (Cf. [Ri], lecture VIIL.)

There were many other refinements of similar criteria for Fermat’s Last
theorem to be true. Computer calculations based on these criteria led to a
verification that Fermat’s Last theorem is true for all odd prime exponents less
than four million [BCEM], and that the first case is true for all £ < 8.858 - 10%°
[Su].

The condition that £ is a regular prime seems to hold heuristically for about
61% of the primes. (See the discussion on p. 63, and also p. 108, of [Wa], for
example.) In spite of the convincing numerical evidence, it is still not known
if there are infinitely many regular primes. Ironically, it is not too difficult to
show that there are infinitely many irregular primes. (Cf. [Wa).)

Thus the methods introduced by Kummer, after leading to very strong
results in the direction of Fermat’s Last theorem, seemed to become mired in
difficulties, and ultimately fell short of solving Fermat’s conundrum®.

Faltings’ proof of the Mordell conjecture: In 1985, Gerd Faltings [Fa]
proved the very general statement (which had previously been conjectured by
Mordell) that any equation in two variables corresponding to a curve of genus
strictly greater than one had (at most) finitely many rational solutions. In
the context of Fermat’s Last Theorem, this led to the proof that for each
exponent n > 3, the Fermat equation z™ + y™ = 2™ has at most finitely many
integer solutions (up to the obvious rescaling). Andrew Granville [Gra] and
Roger Heath-Brown [HB] remarked that Faltings’ result implies Fermat’s Last
Theorem for a set of exponents of density one.

However, Fermat’s Last Theorem was still not known to be true for an
infinite set of prime exponents. In fact, the theorem of Faltings seemed ill-
equipped for dealing with the finer questions raised by Fermat in his margin,
namely of finding a complete list of rational points on all of the Fermat curves
z" + y™ = 1 simultaneously, and showing that there are no solutions on these
curves when n > 3 except the obvious ones.

Mazur’s work on Diophantine properties of modular curves: Although
it was not realized at the time, the chain of ideas that was to lead to a proof
of Fermat’s Last theorem had already been set in motion by Barry Mazur in
the mid seventies. The modular curves Xo(¢) and X;(£) introduced in sec-
tion 1.2 and 1.5 give rise to another naturally occurring infinite family of Dio-
phantine equations. These equations have certain systematic rational solutions
corresponding to the cusps that are defined over @, and are analogous to the

1However, W. McCallum has recently introduced a technique, based on the method of
Chabauty and Coleman, which suggests new directions for approaching Fermat’s Last Theo-
rem via the cyclotomic theory. An application of McCallum’s method to showing the second
case of Fermat’s Last Theorem for regular primes is explained in [Mc].
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so-called “trivial solutions” of Fermat’s equation. Replacing Fermat curves by
modular curves, one could ask for a complete list of all the rational points on
the curves Xo(¢) and X;(¢). This problem is perhaps even more compelling
than Fermat’s Last Theorem: rational points on modular curves correspond to
objects with natural geometric and arithmetic interest, namely, elliptic curves
with cyclic subgroups or points of order £. In [Mazl] and [Maz2], B. Mazur
gave essentially a complete answer to the analogue of Fermat’s Last Theorem
for modular curves. More precisely, he showed that if £ # 2,3,5 and 7, (i.e.,
X1(¢€) has genus > 0) then the curve X;(¢) has no rational points other than
the “trivial” ones, namely cusps. He proved analogous results for the curves
Xo(£) in [Maz2], which implied, in particular, that an elliptic curve over Q with
square-free conductor has no rational cyclic subgroup of order £ over Q if £ is
a prime which is strictly greater than 7. This result appeared a full ten years
before Faltings’ proof of the Mordell conjecture.

Frey’s strategy: In 1986, Gerhard Frey had the insight that these construc-
tions might provide a precise link between Fermat’s Last Theorem and deep
questions in the theory of elliptic curves, most notably the Shimura Taniyama
conjecture. Given a solution a® + b¢ = cf to the Fermat equation of prime
degree ¢, we may assume without loss of generality that a® = —1 (mod 4) and
that ¢ = 0 (mod 32). Frey considered (following Hellegouarch, [He], p. 262;
cf. also Kubert-Lang [KL], ch. 8, §2) the elliptic curve

E:y? =z(z — a®)(z + b%).

This curve is semistable, i.e., it has square-free conductor. Let E[f] denote the
group of points of order £ on E defined over some (fixed) algebraic closure Q
of Q, and let L denote the smallest number field over which these points are
defined. This extension appears as a natural generalization of the cyclotomic
fields Q(¢¢) studied by Kummer. What singles out the field L for special
attention is that it has very little ramification: using Tate’s analytic description
of E at the primes dividing abc, it could be shown that L was ramified only at 2
and ¢, and that the ramification of L at these two primes was rather restricted.
(See theorem 2.15 of section 2.2 for a precise statement.) Moreover, the results
of Mazur on the curve Xo(¢) could be used to show that L is large, in the
following precise sense. The space E[{] is a vector space of dimension 2 over the
finite field F, with £ elements, and the absolute Galois group Gg = Gal (Q/Q)
acts Fg-linearly on E[f]. Choosing an F;-basis for E[{], the action is described
by a representation

pE,e : Gal(L/Q) — GLy(F,).

Mazur’s results in [Mazl] and [Maz2] imply that g, is irreducible if £ > 7
(using the fact that E is semi-stable). In fact, combined with earlier results
of Serre [Se6], Mazur’s results imply that for £ > 7, the representation pg ¢ is
surjective, so that Gal (L/Q) is actually isomorphic to GL2(F¢) in this case.

Serre’s conjectures: In [Se7], Jean-Pierre Serre made a careful study of mod
¢ Galois representations p : Gog — GL2(F;) (and, more generally, of repre-
sentations into GLo(k), where k is any finite field). He was able to make very
precise conjectures (see section 3.2) relating these representations to modular
forms mod £. In the context of the representations pg, that occur in Frey’s
construction, Serre’s conjecture predicted that they arose from modular forms
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(mod £) of weight two and level two. Such modular forms, which correspond to
differentials on the modular curve X((2), do not exist because X(2) has genus
0. Thus Serre’s conjecture implied Fermat’s Last Theorem. The link between
fields with Galois groups contained in GLy(F;) and modular forms mod ¢ still
appears to be very deep, and Serre’s conjecture remains a tantalizing open
problem.

Ribet’s work: lowering the level: The conjecture of Shimura and Taniya-
ma (cf. section 1.8) provides a direct link between elliptic curves and modular
forms. It predicts that the representation pg,, obtained from the ¢-division
points of the Frey curve arises from a modular form of weight 2, albeit a form
whose level is quite large. (It is the product of all the primes dividing abc,
where af + b* = cf is the putative solution to Fermat’s equation.) Ribet [R5]
proved that, if this were the case, then pg ¢ would also be associated with a
modular form mod £ of weight 2 and level 2, in the way predicted by Serre’s
conjecture. This deep result allowed him to reduce Fermat’s Last Theorem to
the Shimura-Taniyama conjecture.

Wiles’ work: proof of the Shimura-Taniyama conjecture: In [W3] Wiles
proves the Shimura-Taniyama conjecture for semi-stable elliptic curves, provid-
ing the final missing step and proving Fermat’s Last Theorem. After more than
350 years, the saga of Fermat’s Last theorem has come to a spectacular end.

The relation between Wiles’ work and Fermat’s Last Theorem has been
very well documented (see, for example, [R8], and the references contained
therein). Hence this article will focus primarily on the breakthrough of Wiles
[W3] and Taylor-Wiles [TW] which leads to the proof of the Shimura-Taniyama
conjecture for semi-stable elliptic curves.

From elliptic curves to /-adic representations: Wiles’ opening gambit for
proving the Shimura-Taniyama conjecture is to view it as part of the more gen-
eral problem of relating two-dimensional Galois representations and modular
forms. The Shimura-Taniyama conjecture states that if E is an elliptic curve
over Q, then E is modular. One of several equivalent definitions of modularity
is that for some integer N there is an eigenform f = Y an,g™ of weight two on
To(N) such that
#E(Fp) =p+1-a,

for all but finitely primes p. (By an eigenform, here we mean a cusp form which
is a normalized eigenform for the Hecke operators; see section 1 for definitions.)

This conjecture acquires a more Galois theoretic flavour when one considers
the two dimensional £-adic representation

PE: GQ — GLg(Z[)

obtained from the action of Gg on the f-adic Tate module of E: T,E =
liin E[I"](Q). An f-adic representation p of Gg is said to arise from an eigen-

form f =) a,q™ with integer coefficients ay, if
tr (p(Frob ,)) = ay,

for all but finitely many primes p at which p is unramified. Here Frob, is a
Frobenius element at p (see section 2), and its image under p is a well-defined
conjugacy class.
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A direct computation shows that #E(F,) = p+ 1 — tr (pg,e(Frob,)) for
all primes p at which pg, is unramified, so that E is modular (in the sense
defined above) if and only if for some ¢, pg, arises from an eigenform. In
fact the Shimura-Taniyama conjecture can be generalized to a conjecture that
every f-adic representation, satisfying suitable local conditions, arises from a
modular form. Such a conjecture was proposed by Fontaine and Mazur [FM].

Galois groups and modular forms

Viewed in this way, the Shimura-Taniyama conjecture becomes part of a much
larger picture: the emerging, partly conjectural and partly proven correspon-
dence between certain modular forms and two dimensional representations
of Gg. This correspondence, which encompasses the Serre conjectures, the
Fontaine-Mazur conjecture, and the Langlands program for GLs, represents a
first step toward a higher dimensional, non-abelian generalization of class field
theory.

Two-dimensional representations of Gg: In the first part of this century,
class field theory gave a complete description of G?Qb, the maximal (continu-
ous) abelian quotient of Gg. In fact the Kronecker-Weber theorem asserts that
Gab = Hp Z,, and one obtains a complete description of all one-dimensional
representations of Gg. In the second half of this century much attention has
focused on attempts to understand the whole group Gg, or more precisely to
describe all its representations. Although there has been a fair degree of suc-
cess in using modular forms to construct representations of Gg, less is known
about how exhaustive these constructions are. The major results in the lat-
ter direction along these lines are the work of Langlands [L12] and the recent
work of Wiles (W3] completed by [TW]). Both concern two-dimensional rep-
resentations of Gg and give significant evidence that these representations are
parametrised (in a very precise sense) by certain modular forms. The purpose
of this article is to describe both the proven and conjectural parts of this the-
ory, give a fairly detailed exposition of Wiles’ recent contribution and explain
the application to Fermat’s Last theorem. To make this description somewhat
more precise let us distinguish three types of representation.

Artin representations and the Langlands-Tunnell theorem: Contin-
uous representations p : Gg = GLy(C) are called (two-dimensional) Artin
representations. Such representations necessarily have finite image, and are
therefore semi-simple. We restrict our attention to those which are irreducible.
They are conjectured to be in bijection (in a precise way) with certain newforms
(a special class of eigenforms). Those p which are odd (i.e. the determinant of
complex conjugation is —1), should correspond to weight 1 holomorphic new-
forms. Those which are even should correspond to certain non-holomorphic
(Maass) newforms. Two partial but deep results are known.

(a) (Deligne-Serre) If f is a holomorphic weight one newform then the cor-
responding Artin representation can be constructed ([DS]).

(b) (Langlands-Tunnell) If p is a two dimensional Artin representation with
soluble image then the corresponding modular form exists ([L12] and
[Tu]).
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The proof of the latter result is analytic in nature, invoking the trace formula
and the theory of L-functions.

{-adic representations and the Fontaine-Mazur conjecture: By an ¢-
adic representation we shall mean any continuous representation p : Go —
GL,(K) which is unramified outside a finite set of primes and where K is a
finite extension of Q (generalizing slightly the notion of £-adic representation
that was introduced before). Given a holomorphic newform f one can attach
to f a system of ¢-adic representations, following Eichler, Shimura, Deligne and
Serre. These ¢-adic representations are called modular. The Fontaine-Mazur
conjecture (see [FM]) predicts if p is an odd, irreducible, ¢-adic representation
whose restriction to the decomposition group at £ is well enough behaved, then
p is modular. (The restriction on the behaviour of the representation on the
decomposition group at £ is essential in this conjecture; it is not true that all
odd, irreducible two dimensional £-adic representation are modular.) Before
Wiles’ work almost nothing was known about this conjecture, except that cer-
tain very special cases could be deduced from the work of Hecke, Langlands
and Tunnell.

Mod ¢ representations and Serre’s conjecture: A mod ¢ representation
is a continuous representation 5 : Gg — GL2(F;). For example if E/Q is an
elliptic curve then the action of Gg on the ¢-division points of E gives rise to a
mod £ representation pg ¢ which is just the reduction modulo £ of pg ¢. One can
use the work of Eichler, Shimura, Deligne and Serre to associate to each mod
¢ eigenform a mod £ representation of Gg. The mod £ representations which
arise in this way are called modular. Serre has conjectured [Se7] that every
odd (absolutely) irreducible mod £ representation is modular and should arise
from a mod £ eigenform with certain very specific properties. This conjecture
can be thought of as having two parts.

The first asserts that every odd irreducible mod £ representation is modular.
About this very little is known. It is known for 5 : Gog — GL2(F2) by work
of Hecke. It is also known for 5 : Gg — GL2(Fs). This latter result is an
application of the Langlands-Tunnell theorem using the two accidents that
there is a section to the homomorphism GL3(Z[v/-2]) = GL2(F3) and that
GLy(F3) is soluble. Partial results for g : Gg — GL2(Fs) follow from Wiles’
work.

Given a mod £ representation arising from a mod £ eigenform, the second
part of Serre’s conjecture predicts the minimal weight and level for that mod
£ eigenform. Here the situation is much better. There has been a lot of work
over the last decade (including ideas from Mazur, Ribet, Carayol and Gross)
and the problem is nearly completely resolved (see [Dil]). As was pointed
out earlier, Ribet’s contribution [R5] implies that, if one can show that the
Galois representation gg ¢ arising from the (semi-stable) Frey curve attached
to a solution of Fermat’s equation with exponent ¢ is modular, then one can
show that this representation does not exist—because it would be modular of
weight two and level two— and hence one can deduce Fermat’s Last Theorem.

However we have seen that to show pg ¢ is modular it suffices to show that
for some £y, the £p-adic representation pg ¢, is modular. In particular it suffices
to verify that either pg 3 or pgs is modular. Hence the Shimura-Taniyama
conjecture can be reduced to (part of) the Fontaine-Mazur conjecture for £ = 3
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and 5. We have seen that for these primes part of Serre’s conjecture is known,
so it turns out it suffices to prove results of the form “Serre’s conjecture for £
implies the Fontaine-Mazur conjecture for £”. This is the direction of Wiles’
work, although nothing quite this general has been proven yet.

Deformation theory: Thus the problem Wiles faces is to show that if p is
an odd f-adic representation which has irreducible modular reduction g and
which is sufficiently well behaved when restricted to the decomposition group
at £, then p is modular. In fact he only proves a weakened version of such a
result, but one which is sufficient to conclude that all semistable elliptic curves
are modular.

Wiles approaches the problem by putting it in a more general setting. On
the one hand he considers lifts of p to representations over complete noetherian
local Zg-algebras R. For each finite set of primes X, one can consider lifts of
type X; these are lifts which are well-behaved on a decomposition group at ¢,
and whose ramification at primes not in ¥ is rather restricted. In particular,
such a lift is unramified outside ¥ U S where S is the set of ramified primes
of p. A method of Mazur (see [Maz3]) can then be used to show that if g is
absolutely irreducible, then there is a representation

p%“iv : GQ — GLz(R):)

which is universal in the following sense. If p : Gg & GL2(R) is a lift of p of
type X, then there is a unique local homomorphism Ry — R such that p is
equivalent to the pushforward of p"iv. Thus the equivalence classes of type &
lifts to GLy(R) can be identified with Hom(Ryx, R). The local ring Ry is called
the universal deformation ring for representations of type X.

On the other hand Wiles constructs a candidate for a universal modular
lifting of type ¥

pEmd : GQ — GL, (Tz;).

The ring Ty is constructed from the algebra of Hecke operators acting on
a certain space of modular forms. The universal property of Ry gives a
map Ry — Tyx. The problem thus becomes: to show that this map is an
isomorphism?. In fact, it can be shown to be a surjection without great dif-
ficulty, and the real challenge is to prove injectivity, i.e., to show, in essence,
that Ry is not larger than Tyx.

By an ingenious piece of commutative algebra, Wiles found a numerical
criterion for this map to be an isomorphism, and for the ring Ty to be a local
complete intersection. This numerical criterion seems to be very close to a
special case of the Bloch-Kato conjecture [BK]. Wiles further showed (by com-
bining arguments from Galois cohomology and from the theory of congruences
between modular forms) that this numerical criterion was satisfied if the min-
imal version Ty of this Hecke algebra (obtained by taking ¥ = 0, i.e., allowing
the least possible amount of ramification in the deformations) was a complete
intersection. Finally in [TW] it was proved that Ty is a complete intersection.

2Maps of this kind were already considered in [Maz3] and [BM], and it is conjectured in
[MT] that these maps are isomorphisms in certain cases, though not in exactly the situations
considered by Wiles.
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Outline of the paper

Chapter 1 recalls some basic notions from the classical theory of elliptic curves
and modular forms, such as modular forms and modular curves over C and Q,
Hecke operators and g-expansions, and Eichler-Shimura theory. The Shimura-
Taniyama conjecture is stated precisely in section 1.8.

Chapter 2 introduces the basic theory of representations of Gg. We describe
Mazur’s deformation theory and begin our study of the universal deformation
rings using techniques from Galois cohomology and from the theory of finite
flat group schemes. We also recall some basic properties of elliptic curves, both
to explain Frey’s argument precisely and illustrate the uses of ¢-adic represen-
tations.

Chapter 3 explains how to associate Galois representations to modular
forms. We then describe what was known and conjectured about associating
modular forms to Galois representations before Wiles’ work. After introducing
the universal modular lifts of certain mod £ representations, we give the proof
of Wiles’ main theorems, taking for granted certain results of a more technical
nature that are proved in the last two chapters.

Chapter 4 explains how to prove the necessary results concerning the struc-
ture of Hecke algebras: the generalization by Taylor and Wiles of a result of de
Shalit, and the generalization by Wiles of a result of Ribet.

Chapter 5 establishes the fundamental results from commutative algebra
discovered by Wiles, following modifications of the approach of Wiles and
Taylor-Wiles proposed by Faltings and Lenstra.



