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Preface

Traditionally, elementary number theory is a branch of number theory
dealing with the integers without use of techniques from other mathematical
fields. With this objective in mind, and exercising as much control as pos-
sible over my own prejudices, I have sought to pare away all material that
might be considered extraneous in a three hour per week, twelve week se-
mester course in elementary number theory. This leads to my aim in writing
this book: On the one hand, I must present in a well-motivated and natu-
ral sequence the basic ideas and results of elementary number theory. On
the other hand, enough material is covered to provide a firm base on which
to build for later studies in algebraic number theory and analytic number
theory. The only background material required of the reader is a knowledge
of some simple properties of the system of integers. Otherwise this concise
book is self-contained.

The book begins with a few preliminaries on induction principles, fol-
lowed by a quick review of division algorithm. The substance of the book
starts in the second chapter, where, using divisors, the greatest (least) com-
mon divisor (multiple), the Euclidean algorithm and linear indeterminate
equation are discussed. This foundation supports the subsequent chapters:
prime numbers; congruences; congruent equations; and, finally, three addi-
tional topics (comprising cryptography, Diophantine equations and Gaussian
integers). Placed at the end of each chapter are some exercises that illus-
trate the theory and provide practice in the techniques. Answers to all the
even-numbered problems are given at the end of the book.

The above-mentioned material was used with groups of undergraduates
in one-semester courses at Memorial University of Newfoundland. A brisk
pace should make it possible to cover this little book in its entirety in one
semester.

While writing this book I was encouraged by and benefited from a num-
ber of individuals. Here, I want to thank Hershy Kisilevsky at Concordia
University as well as Herb Gaskill, Donald E. Rideout, Yiqiang Zhou and
my students at Memorial University of Newfoundland for their helpful com-
ments and suggestions. Meanwhile, I am very grateful to the referee for
his invaluable review, but also to Shing-Tung Yau at Harvard University
and Brian Bianchini and Lisa Lin at International Press for their practical
advice. Last but not least, I wish to take this opportunity to acknowledge
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my sense of indebtedness to my family for their considerable patience and
understanding.

Montreal & St. John’s
Summer 2002 & Fall 2005 – Spring 2006 Jie Xiao
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