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Surveys in Differential Geometry XI

Metric and comparison geometry

Jeff Cheeger and Karsten Grove

The present volume surveys some of the important recent developments
in metric geometry and comparison geometry. These areas represent a vital
and expanding part of modern geometry. We begin with an indication of
their scope and perspective.

While metric geometry could be taken as refering simply to the geometry
of metric spaces with no additional structure, our interest here is in those
metric spaces which are smooth riemannian manifolds, or more generally, in
metric spaces which are either constructed from smooth riemannian man-
ifolds via natural geometric operations such as the process of taking weak
geometric limits, or which share properties of riemannian manifolds when
these properties are formulated in a suitably weak sense.

Also characteristic of the subject is a certain synthetic mode of argu-
ment driven by an associated sequence of mental pictures. In establishing
the geometric tools on which such synthetic arguments are based, analysis
(calculus in some form) intervenes to an extent which varies from instance
to instance.

By comparison geometry we mean the study of manifolds (or more gen-
eral metric spaces) whose curvature satisfies definite bounds, for instance,
the classification problem for manifolds of positive curvature, which is still
far from solved.

Comparison theorems are a key tool in comparison geometry. These are
theorems which assert that if a particular inequality on curvature is satisfied,
then some associated geometric property holds at least to the extent that it
does in a corresponding model case, often one in which the curvature is con-
stant. Classical comparison theorems pertain to the behavior of geodesics,
and related objects such as the Jacobi equation, the formula for the second
variation of arc length and the index form in Morse theory.
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vi PREFACE

Increasingly however, the solution of a problem in comparison geome-
try is likely to call for a combination of synthetic, analytic and topological
arguments.

Scalar curvature, for example, is too weak an invariant to control the
behavior of geodesics. At the infinitesimal level scalar curvature controls
the volume of balls, but it fails to do so for balls of any definite positive
radius. Nonetheless, although manifolds with positive scalar curvature are
much less constrained than those with positive sectional curvature, there
are analytically based results for positive scalar curvature which do not (at
present) have synthetic proofs, even under the assumption that the sectional
curvature is positive e.g. the vanishing of the Â-genus for spin manifolds with
positive scalar curvature. The Â-genus is actually a concept from topology,
and topological techniques, such as surgery theory, also play an important
role in the subject.

In the study of manifolds with a lower bound on Ricci curvature, esti-
mates on geodesics can be used to control volume. They are also important in
situations which are highly constrained (in fact almost rigid). However, some
control over geodesics is lost when one passes to weak geometric limits; for
example, one can have infinitely many distinct geodesics with the same tan-
gent vector. So in addition to comparison theorems like the Bishop-Gromov
inquality, ideas from analysis such as Bochner’s formula, the maximum prin-
ciple, gradient estimates for harmonic functions are required. The theories
of Einstein manifolds and Ricci flow involve geometry as well as analysis.

Even in the world of more general metric spaces, the connection with
analysis is seen in results where the existence of a measure satisfying a
suitable compatibility condition with the metric, say a doubling condition,
or Poincaré inequality, leads to metric or topological conclusions, in whose
statement the measure does not appear. In metric riemannian geometry,
this is particularly relevant in the context of lower (and two-sided) Ricci
curvature bounds.

Thus, it seems that distinctions such as “metric geometry” versus “geo-
metric analysis” are to some extent artificial and if pressed too far, are
genuinely destructive. To reiterate, increasingly, the solution of specific geo-
metric problems requires a mixture of synthetic, analytic and topological
arguments — the work of Perelman (on the program originated by Hamilton)
being just one, albeit spectacular, example. This circumstance can only make
the subject more interesting.

This having been said, our purpose here is to focus primarily, but not
exclusively, on techniques from metric geometry and their use in the study
of comparison geometry.
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What then does the metric point of view have to offer? Here are few of
the possible answers.

The metric space structure does not presuppose any assumption of
smoothness. Attempting to extend notions of curvature to objects with min-
imal smoothness can provide fundamental insight. For instance, one can
try to understand which notions of curvature are defined for piecewise flat
spaces, or for convex hypersurfaces, or what Ricci curvature bounds might
mean for a space equipped with a metric and a measure.

At a more practical level, certain results which have arisen in metric
riemannian geometry have subsequently been realized to have natural exten-
sions to much more general contexts and these have turned out to be of fun-
damental importance. A prime example is furnished by the work of Gromov
in geometric group theory.

Finally, even if one were only interested in riemannian manifolds per se,
the study of more general metric measure spaces provides useful information,
for example, via the following route. Compactness theorems, such as that of
Gromov, (whose hypothesis requires a definite lower bound on Ricci curva-
ture) enable one to take weak geometric limits of sequences of riemannian
manifolds Mn

i . The resulting limit spaces, Y , may be viewed as playing a
role in riemannian geometry which is analogous to that played by distri-
butions or Sobolev functions in analysis. Information on the regularity and
singularity structure of such Y (the analog of Sobolev embedding theorems)
provides information on the sequence, Mn

i , in some cases enough informa-
tion to show that in actuality, it could not have existed in the first place,
and in other cases, information on structure of the Mn

i , for i large.

On the face of it, this sort of reasoning might appear circular, since it
would seem that the only possibility for obtaining nontrivial information
on the limit space would have to be via uniform estimates on the approx-
imating sequence. While initially this is so, once some preliminary proper-
ties of the limit objects have been established, additional properties can be
deduced purely synthetically i.e. without further reference to the approxi-
mating sequence Mn

i . This in turn, provides new information on the Mn
i

themselves.

We now turn to the articles in the present volume.

As we have indicated, lower bounds on Ricci curvature and in particu-
lar lower bounds on sectional curvature provide a natural setting in which
convergence methods play a significant role. Their utility in applications is
governed by the extent to which the limit objects and their relation to ele-
ments of a limiting sequence is well understood. Such understanding is most
complete in the case of bounded sectional curvature; see the article by Rong.
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When only a lower sectional curvature bound is imposed, the stability
theorem of Perelman provides good information in the noncollapsing case.
A (long awaited) complete and detailed exposition of Perelman’s stability
theorem is presented in the article by Kapovitch.

Although there have been important recent advances in the collapsing
case, the crucially important class of almost nonnegatively curved manifolds
is still poorly understood. Since all limit objects are Alexandrov spaces, the
theory of these spaces will be indispensible in future developements; see the
article by Petrunin.

Convergence theory in the case in which only a lower Ricci curvature
bound is imposed, is surveyed in the article by Wei.

A class of metric measure spaces, for which a sythetic definitition of lower
Ricci curvature bounds is possible has long been sought and has recently
emerged. This class, includes in particular, weak limits riemannian manifolds
with lower Ricci curvature bounds. The general theory will surely undergo
considerable further developement; see the article by Lott.

Progress in the classical areas of manifolds with nonnegative or positive
sectional curvature is discussed in the articles of Wilking and of Ziller. The
latter provides a self contained account on all examples known to date.

After this volume was completed a milestone was reached in the classical
pinching problem: A (pointwise) weakly 1/4 pinched manifold is diffeomor-
phic to either a space form or it is isometric to a rank one symmetric space.
The proof due to Brendle and Schoen is an amazing application of the Ricci
flow. An account provided by wilking of this exciting development can be
found as an “added in proof” section of his article in this volume.

In cases where uniform curvature comparisons are available, convergence
methods have played a role when only upper curvature bounds are present
e.g. for simply connected manifolds with nonpositive sectional curvature and
in parts of geometric group theory. A survey on the current state of affairs
for general spaces with an upper curvature bound is provided in the article
by Schröder and Buyalo.

The article by Farrell, Jones and Ontaneda is concerned with geometric
and topological rigidity and flexibility issues for negatively curved manifolds.

An update on the status of the classification problem for manifolds
with positive and nonnegative scalar curvature is given in the article by
Rosenberg.

The selection of topics treated in this volume has been influenced by
several factors, including space, existence of other sources and our success
(or failure) in attracting contributors. So we will conclude by mentioning
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some topics that might have well been included, but for whatever reason,
ended up being omitted, or almost so.

In the first place, lower curvature bounds are very much emphasized over
upper bounds. While this was not by design, there do exist several excel-
lent surveys which treat nonpositively curved manifolds. Recent progress on
Einstein manifolds, in whose proofs metric geometry plays a role, might have
been discussed. Nonsmooth calculus on metric measure spaces is another
topic which has close relations with material considered here. (For a very
informative overview, see Heinonen’s recent survey in the Bulletin of the
AMS.) Several topics from Perelman’s papers on geometrization, such as
comparison theorems in generalized and possibly infinite dimensional set-
tings, would have been natural to include had they not been exposed at
great length elsewhere. Other natural topics which wound up being left out
are geometric group theory, isoperimetric inequalities and “curvature free”
metric geometry (including results on systols).

The excluded topics could easily fill a second volume. Perhaps, at some
future time, they will.
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