Surveys in Differential Geometry

Vol. 1:	Lectures given in 1990 edited by ST. Yau and H. Blaine Lawson
Vol. 2:	Lectures given in 1993 edited by C.C. Hsiung and ST. Yau
Vol. 3:	Lectures given in 1996 edited by C.C. Hsiung and ST. Yau
Vol. 4:	Integrable systems edited by Chuu Lian Terng and Karen Uhlenbeck
Vol. 5:	Differential geometry inspired by string theory edited by ST. Yau
Vol. 6:	Essay on Einstein manifolds edited by Claude LeBrun and McKenzie Wang
Vol. 7:	Papers dedicated to Atiyah, Bott, Hirzebruch, and Singer edited by ST. Yau
Vol. 8:	Papers in honor of Calabi, Lawson, Siu, and Uhlenbeck <i>edited by ST. Yau</i>
Vol. 9:	Eigenvalues of Laplacians and other geometric operators <i>edited by A. Grigor'yan and S-T. Yau</i>
Vol. 10:	Essays in geometry in memory of SS. Chern <i>edited by ST. Yau</i>
Vol. 11:	Metric and comparison geometry edited by Jeffrey Cheeger and Karsten Grove
Vol. 12:	Geometric flows edited by Huai-Dong Cao and ST. Yau
Vol. 13:	Geometry, analysis, and algebraic geometry edited by Huai-Dong Cao and ST.Yau
Vol. 14:	Geometry of Riemann surfaces and their moduli spaces edited by Lizhen Ji, Scott A. Wolpert, and ST. Yau

Surbeys in Differential Geometry

Eigenvalues of Laplacians and other geometric operators

edited by Alexander Grigor'yan and Shing-Tung Yau

Surveys in Differential Geometry, Vol. 9

Editors:
Alexander Grigor'yan, Bielefeld University, Germany
Shing-Tung Yau, Harvard University

Copyright © 2004, 2010 by International Press Somerville, Massachusetts, U.S.A.

All rights reserved. Individual readers of this publication, and non-profit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgement of the source is given. Republication, systematic copying, or mass reproduction of any material in this publication is permitted only under license from International Press.

Excluded from these provisions is material in articles to which the author holds the copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author. (Copyright ownership is indicated in the notice on the first page of each article.)

ISBN 978-1-57146-180-3

Paperback reissue 2010. Previously published in 2004 under ISBN 1-57146-115-9 (clothbound).

Typeset using the LaTeX system.

Preface

This year, we have decided to concentrate on an important topic in Geometry: the eigenvalues of the Laplacian and other geometric operators. This has been one of the most fundamental subjects in the area. The works on Hodge theory and the heat equation proof of the Hodge theorem certainly show its importance. One of the most dramatic and influential papers was the one by Mark Kac on "How to hear the shape of the drum", which intimately connected the geometry of a manifold with the spectrum of the Laplacian on it.

A strong understanding of spectral properties of differential operators has deep consequences in Geometry, Physics, Number Theory, Probability Theory, etc. Analytic methods have penetrated also into Discrete Mathematics, where the study of the spectral properties of difference operators leads to deeper understandings of the combinatorial questions on graphs.

This volume is an attempt to survey the diversity of directions unified under the above headings. Although the subject is too big to be covered by a single book, we still believe that the present collection does introduce a substantial part of the subject, and we hope it will be beneficial to geometers and experts from the related areas.

> Alexander Grigor'yan and Shing-Tung Yau April 2004

Contents

Preface	iii
Anomalous diffusion and stability of Harnack inequalities Martin T. Barlow	1
From isoperimetric inequalities to heat kernels via symmetrisation Gérard Besson	27
Discrete Isoperimetric Inequalities Fan Chung	53
An excursion into geometric analysis Tobias H. Colding and William P. Minicozzi II	83
Eigenvalues of elliptic operators and geometric applications Alexander Grigor'yan, Yuri Netrusov, and Shing-Tung Yau	147
Spectral gap, logarithmic Sobolev constant, and geometric bounds Michel Ledoux	219
Discrete Analytic Functions: An Exposition László Lovász	241
Conformal properties in classical minimal surface theory William H. Meeks III and Joaquín Pérez	275
Analysis of the Cut Locus via the Heat Kernel Robert Neel and Daniel Stroock	337
Analysis on Riemannian co-compact covers Laurent Saloff-Coste	351
Functoriality and Small Eigenvalues of Laplacian on Riemann Surfaces Freydoon Shahidi	385
The inverse spectral problem Steve Zelditch	401