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Preface

This book consists of mathematical and algorithmic studies of geometry of polyhedral
surfaces based on the variations principles. The part of mathematics is based on a lecture
series given by Feng Luo at the Center of Mathematical sciences at Zhejiang Univer-
sity, China, in June and July 2006. The algorithmic theory and applications to computer
graphic are based on the work of Xianfeng Gu and are written by him. The task of writing
the part of mathematics of the note was done by Junfei Dai who prepared them with great
care and made a number of improvements in the exposition.

The aim of this book is to introduce to the students and researchers an emerging
field of polyhedral surface geometry and computer graphics based on variation princi-
ples. These variational principles are derived from the derivatives of the cosine law for
triangles. From mathematical point of view, one of the most fascinating identity in low-
dimensional polyhedral geometry is the Schlaefli formula. It relates in a simple and el-
egant to way the volume, edge lengths and dihedral angles of tetrahedra in the spheres
and hyperbolic spaces in dimension 3. The formula can be considered as a foundation of
3-dimensional variational principles for triangulated objects. For a long time, mathemati-
cians have been considering the Gauss-Bonnet formula as the 2-dimensional counterpart
of Schlaefli. The recent breakthrough in this area was due to the work of Colin de Verdiere
in 1995 who found the first 2-dimensional identity relating edge lengths and inner angles
similar to the Schlaefli identity. The mathematical work produced in this book can be
considered as establishing all 2-dimensional counterparts of Schaefli formula. It turns out
there are continuous families of Schlaefli type identities in dimension 2. These identi-
ties produce many interesting variational principles for polyhedral surfaces. In the part
of mathematics of the book, we are focusing on a study of the rigidity phenomena on
polyhedral surfaces. Some moduli space problems are also discussed in the book.

In the part of algorithm of the book, we introduce discrete curvature flow from both
theoretical and practical points of view. Discrete curvature flow is a powerful tool for
designing metrics by prescribed curvatures. The algorithm maps general surfaces with ar-
bitrary topologies to three canonical spaces. Therefore, all geometric problems of surfaces
in 3D space are converted to 2D ones. This greatly improves the efficiency and accuracy
for engineering applications. The discrete Ricci flow algorithm, and Ricci energy opti-
mization algorithm are rigorous, robust, flexible and efficient. They have been applied for
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surface matching, registration, shape classification, shape analysis and many fundamental
applications in practice.

This book is written for senior undergraduate students and graduate students majoring
in mathematics or computer science. The mathematical requirements to follow the proofs
in the book are some basic knowledge of differential geometry and elementary surface
topology. We have not stated and proved theorems in the book in the most general form
to avoid the technical details. For computer science majors with basic knowledge in data
structure and algorithm, all the algorithms in the book can be implemented straightfor-
wardly by following the pseudo codes and the software system can be built step by step
from scratch. Some data sets and source code are also available upon request.

This book should be valuable for researchers in surface geometry, computer graph-
ics, computer vision, geometric modelling, visualization, medical imaging and scientific
computation fields. The computational algorithms are also useful for geometric modelers,
industrial products designer, digital artists, animators, game developers and anyone who
needs digital geometry processing tools.

We owe much to many colleagues and friends with whom we have discussed the sub-
ject matter over the years. The first author would like to thank Ben Chow who introduced
him the wonderful world of discrete curvature flows and the Ricci flow. The second au-
thor is very grateful to all professors in the Center of Visual Computing at Stony Brook:
Arie Kaufman, Hong Qin, Dimitris Samaras, Klaus Mueller and all faculty members in
the Computer Science department in Stony Brook University. The second author deeply
appreciate the encouragements and valuable advices from Professor Shing-Tung Yau.

The authors thank National Science Foundation of USA for supporting our collabora-
tive research on discrete curvature flow.

Last but not least, we also want to thank our families, without their supports, this book
could not be accomplished.

Piscataway, New Jersey, Feng Luo
Stony Brook, New York, Xianfeng David Gu
Hangzhou, China, Junfei Dai

Summer 2007
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