Series in Geometry and Topology

Editor

Shing-Tung Yau

Series in Geometry and Topology

Volume 39

Curvature Problems

Claus Gerhardt

Claus Gerhardt Ruprecht-Karls-Universität Institut für Angewandte Mathematik Im Neuenheimer Feld 294 69120 Heidelberg

gerhardt@math.uni-heidelberg.de http://www.math.uni-heidelberg.de/studinfo/gerhardt/

Mathematics Subject Classification (2000): 35J60, 53C21, 53C44, 53C50, 58J05

ISBN-10: 1-57146-162-0 ISBN-13: 978-1-57146-162-9

© International Press 2006

International Press, Somerville, MA

Preface

Applying analytic methods to geometric problems has proved to be extremely fruitful in the last decades. Among the new techniques, with the help of which many problems have been solved, curvature flows and a priori estimates for fully non-linear elliptic partial differential equations are especially important.

The use of curvature flows started with the groundbreaking paper of Hamilton [41] in which he considered the Ricci flow which is driven by the Ricci curvature. Huisken [43] then studied the mean curvature flow. These fundamental papers created a new analytical tool for solving problems in geometry and physics.

In the present book we consider curvature problems in Riemannian and Lorentzian geometry which have in common that either the extrinsic curvature of closed hypersurfaces is prescribed or that curvature flows driven by the extrinsic curvature are studied and used to obtain some insight in the nature of possible singularities.

The first chapter provides some background material from differential geometry and some sections might even be interesting for those working in this field.

Chapter 1 gives a thorough introduction to the theory of curvature functions and extrinsic curvature flows with detailed proofs and also offers a complete proof of the short time existence and existence in a maximal time interval.

After this very general treatment of curvature flows, we consider specific geometrical problems: Either finding closed hypersurfaces of prescribed curvature, where the right-hand side is defined in the ambient space or in the tangent bundle of the ambient space, or studying the inverse mean curvature flow in Lorentzian manifolds having a future singularity in order to obtain some insight in the nature of this singularity like finding a sufficiently smooth transition from big crunch to big bang under certain circumstances.

This book is supposed to be an advanced textbook for graduate students and researchers interested in geometry and general relativity.

I would like to thank Heiko Kröner and Christian Enz for proofreading large parts of the final manuscript and Shing-Tung Yau for accepting the manuscript for the Series in Geometry and Topology.

Heidelberg, July 2006

Claus Gerhardt

Contents

Chapter	1. Foundations	1
1.1.	Hypersurfaces in semi-Riemannian manifolds	1
1.2.	Polar coordinates in \mathbb{R}^{n+1}	8
1.3.	Gaussian coordinate systems	12
1.4.	Global Gaussian coordinate systems	25
1.5.	Graphs in Riemannian manifolds	32
1.6.	Graphs in Lorentzian manifolds	33
1.7.	Geodesic polar coordinates	35
1.8.	Strictly convex functions	38
1.9.	Focal points and tubular neighbourhoods	40
1.10.	Closed umbilic hypersurfaces in \mathbb{R}^{n+1} are spheres	54
1.11.	Fredholm operators and Sard's theorem	55
Chapter	2. Curvature flows in semi-Riemannian manifolds	61
2.1.	Curvature functions	61
2.2.	Curvature functions of class (K)	81
2.3.	Evolution equations for some geometric quantities	92
2.4.	Essential parabolic flow equations	96
2.5.	Short time existence	102
2.6.	Long time existence	119
2.7.	First a priori estimates	120
Chapter		
	manifolds	131
3.1.	Formulation of the problem	131
3.2.	Lifting of the problem to the universal cover	132
3.3.	Curvature estimates	138
3.4.	Existence of a solution	141
3.5.	Prescribing curvature in arbitrary Riemannian manifolds	142
3.6.	Existence of solutions to the auxiliary problem	147
3.7.	Existence of a solution to the original problem	152
3.8.	Hypersurfaces solving $F = f(x, \nu)$	153
Chapter		
	manifolds	157
4.1.	Convex hypersurfaces of prescribed curvature	157
	Converting personal access of presenteed curvature	
4.2.	Hypersurfaces of prescribed mean curvature	160
		$\begin{array}{c} 160 \\ 162 \end{array}$

Contents

4 5	Communes to a station and caletion	166
4.5.	Convergence to a stationary solution	166
4.6.	Foliation of a spacetime by CMC hypersurfaces	167
4.7.	Foliation of future ends	169
4.8.	The case $\Lambda = 0$	174
Chapte	r 5. Hypersurfaces of prescribed scalar curvature	177
5.1.	Formulation of the problem	177
5.2.	Elliptic regularization	179
5.3.	An auxiliary curvature problem	182
5.4.	Lower order estimates for the auxiliary solutions	185
5.5.	C^2 -estimates for the auxiliary solutions	190
5.6.	Convergence to a stationary solution	191
5.7.	Stationary approximations	192
5.8.	C^1 -estimates for the stationary approximations	194
5.9.	C^2 -estimates for the stationary approximations	198
5.10.	Existence of a solution	207
Chapte	r 6. The IMCF in cosmological spacetimes	209
6.1.	Formulation of the problem	209
6.2.	The evolution problem	209 213
6.2.	Lower order estimates	
6.4.	Lower order estimates C^1 -estimates	214
		218
6.5.	C^2 -estimates	221
6.6.	Longtime existence	222
6.7.	A new time function	223
Chapte	r 7. The IMCF in ARW spaces	225
7.1.	Formulation of the problem	225
7.2.	The evolution problem	227
7.3.	Lower order estimates	229
7.4.	C^1 -estimates	232
7.5.	C^2 -estimates	236
7.6.	Higher order estimates	242
7.7.	Convergence of \tilde{u} and the behaviour of derivatives in t	244
7.8.	Transition from big crunch to big bang	248
7.9.	ARW spaces and the Einstein equations	253
Chapte	r 8. The IMCF in Robertson-Walker spaces	257
8.1.	Formulation of the problem	257
8.2.	The Friedmann equation	258
8.3.	The transition flow	259
8.4.	A counter example	263 263
Chapte	-	265
9.1.	Formulation of the problem	265 265
9.1. 9.2.	Polar sets	267 267
9.2. 9.3.	Curvature estimates	276
9.3. 9.4.	Lower order bounds	270 277
9.4. 9.5.	A uniqueness result	281
5.5.		201

Contents

9.6.	Existence of a solution	282
9.7.	Proof of Theorem 9.1.4	289
Chapter	10. Minkowski type problems in \mathbb{H}^{n+1}	291
10.1.	Formulation of the problem	291
10.2.	The Beltrami map	292
10.3.	Hadamard's theorem in hyperbolic space	296
10.4.	The Gauß maps	298
10.5.	Curvature flow	306
10.6.	Curvature estimates	312
Bibliography		315
List of Symbols		319
Index		321

 $\mathbf{i}\mathbf{x}$