BASIC PARTIAL
DIFFERENTIAL EQUATIONS

o< S

David Bleecker & George Csordas

Department of Mathematics
University of Hawaii
Honolulu, Hawaii

|? International Press

Cambridge, Massachusetts



Copyright (c) 1996, 2003 by International Press

Library of Congress Control Number 92006226
ISBN 1-57146-036-5

All rights reserved. No part of this work covered by the
copyright hereon may be reproduced or used in any form or by
any means -- graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and
retrieval systems -- without written permission of the publisher.

Manufactured in the United States of America on acid-free paper.

Published by International Press
P.O. Box 43502

Somerville, MA 02143

US.A.

16 15 14 13 12
Library of Congress Cataloging Data
Bleecker, David.

Basic partial differential equations / David Bleecker, George Csordas
735 p. il. 24 cm.

Includes bibliographical references and index

ISBN 1-57146-036-5

1. Differential equations, Partial I. Csordas, George

IL. Title

QA374.B64 1996

515/.353-dc 20



We dedicale this book lo

who, much move than cuwselves,
sleadfastly longed for ils complelion.






Table of Contents

Preface

Chapter 1. Review and Introduction

1.1 A Review of Ordinary Differential Equations
1.2 Generalities about PDEs

1.3 General Solutions and Elementary Techniques

Chapter 2. First-Order PDEs

2.1 First-Order Linear PDEs (Constant Coefficients)
2.2 Variable Coeflicients
2.3 Higher Dimensions, Quasi-linearity, Applications

2.4 Supplement on General Nonlinear First-Order PDEs (Optional)

Chapter 3. The Heat Equation
3.1 Derivation of the Heat Equation and Solutions of the Standard
Initial/Boundary-Value Problems
3.2 Uniqueness and the Maximum Principle
3.3 Time-Independent Boundary Conditions

3.4 Time-Dependent Boundary Conditions and
Duhamel’s Principle for Inhomogeneous Heat Equations

Chapter 4. Fourier Series and Sturm-Liouville Theory

4.1 Orthogonality and the Definition of Fourier Series
4.2 Convergence Theorems for Fourier Series
4.3 Sine and Cosine Series and Applications

4.4 Sturm-Liouville Theory

Chapter 5. The Wave Equation
5.1 The Wave Equation — Derivation and Uniqueness
5.2 D’Alembert’s Solution of Wave Problems

5.3 Other Boundary Conditions and Inhomogeneous Wave Equations

.ix

. 23
. 44

. 98
. 74
.92

111

122
140
157

172

188
207
237
258

282
299
320



Chapter 6. Laplace’s Equation

6.1 General Orientation . . . . . . . . . . . . . . . . .. ... .... 341
6.2 The Dirichlet Problem for a Rectangle . . . . . . . . . . . . . .. . . 351
6.3 The Dirichlet Problem for Annuli and Disks . . . . . . . . . . . . . . 366
6.4 The Maximum Principle and Uniqueness for the Dirichlet Problem . . . . 385
6.5 Complex Variable Theory with Applications . . . . . . . . . . . . . . 398

Chapter 7. Fourier Transforms

7.1 Complex Fourier Series . . . . . . . . . . . . . . . ... ... .. 419
7.2 Basic Properties of Fourier Transforms . . . . . . . . . . . . . . . .. 431
7.3 The Inversion Theorem and Parseval’'s Equality . . . . . . . . . . . . . 447
7.4 Fourier Transform Methods for PDEs . . . . . . . . . . . . . . . . . 458
7.5 Applications to Problems on Finite and Semi-Infinite Intervals . . . . . . 482
Chapter 8. Numerical Solutions of PDEs — An Introduction
8.1 The O Symbol and Approximations of Derivatives . . . . . . . . . . . . 504
8.2 The Explicit Difference Method and the Heat Equation . . . . . . . . . 515
8.3 Difference Equations and Round-off Errors . . . . . . . . . . . . . . . 533
8.4 An Overview of Some Other Numerical Methods for PDEs (Optional) . . . 548
Chapter 9. PDEs in Higher Dimensions
9.1 Higher-Dimensional PDEs — Rectangular Coordinates . . . . . . . . . . 561
9.2 The Eigenfunction Viewpoint . . . . . . . . . . . . . . . . . .. .. 577
9.3 PDEs in Spherical Coordinates . . . . . . . . . . . . . . . . . . .. 591
9.4 Spherical Harmonics, Laplace Series and Applications . . . . . . . . . . 608
9.5 Special Functions and Applications . . . . . . . . . . . . . . .. .. 636

9.6 Solving PDEs on Manifolds . . . . . . . . . e e e e e 654



Appendix

A.1 The Classification Theorem

A.2 Fubini’s Theorem

A.3 Leibniz’s Rule

A.4 The Maximum/Minimum Theorem
A.5 A Table of Fourier Transforms

A.6 Bessel Functions
References
Selected Answers

Index of Notation

Index

677
681
683
691
693
694

697

709

725

727



Dependence of Sections




Preface

Quantities which depend on space and/or time variables are often governed by dif-
ferential equations which are based on underlying physical principles. Partial differential
equations (PDEs) not only accurately express these principles, but also help to predict the
behavior of a system from an initial state of the system and from given external influences.
Thus, it is hard to overestimate the relevance of PDEs in all forms of science and engineer-
ing, or any endeavor which involves reasonably smooth, predictable changes of measurable
quantities.

Having taught from the material in this book for fifteen years with much feedback
from students, we have found that the book serves as a very readable introduction to the
subject for undergraduates with a year and a half of calculus, but not necessarily any
more. In particular, one need not have had a linear algebra course or even a course in
ordinary differential equations to understand the material. As the title suggests, we have
concentrated only on what we feel are the absolutely essential aspects of the subject, and
there are some crucial topics such as systems of PDEs which we only touch on. Yet the
book certainly contains more material than can be covered in a single semester, even with
an exceptional class. Given the broad relevance of the subject, we suspect that a demand
for a second semester surely exists, but has been largely unmet, partly due to the lack of
books which take the time and space to be readable by sophomores. A glance at the table
of contents or the index reveals some subjects which are regarded as rather advanced (e.g.,
maximum principles, Fourier transforms, quasi-linear PDEs, spherical harmonics, PDEs
on manifolds, complex variable theory, conditions under which Fourier series are uniformly
convergent). However, despite general impressions given (perhaps unwittingly) by math-
ematical gurus, any valid mathematical result or concept, regardless of how “advanced”
it is, can be broken down into elementary, trivial pieces which are easily understood by
all who desire to do so. With regard to the so-called “advanced” topics in this book, we
feel that we have accomplished this to a degree which surprised even us. For us it was a
constant and worthwhile challenge to make the book completely self-contained for those
who have only been through the typical freshman/sophomore calculus sequence, even if
they forgot most of it. We have successfully taught students who did not recall how to
solve y'(z) = y(z) with y(0) = 1 at the beginning of the semester, as was the case with
over half of our students according to initial survey tests. However, before the semester’s
end, these same students could prove and understand the Maximum Principle for the heat
equation and could easily deduce the continuous dependence of solutions on initial and
boundary data. In essence, “advanced topics” are rarely difficult per se, but they may
seem so, if (for the sake of elegance) too little time is spent explaining and motivating
them.

We have avoided the temptation to first prove unmotivated results in great generality
and then use them to deduce an abundance of particular cases. By and large, we have
introduced results and techniques inductively through many solved examples. By the time
students. have seen enough examples, they can often anticipate, as well as understand, the
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argument for the general case. In particular, we have found that, in spite of the fact that
the Sturm-Liouville Theory provides a uniform approach to boundary-value problems, it is
not so wise to teach it first to students who are barely familiar with sines and cosines, and
then cover the elementary boundary-value problems as special cases. We have proceeded in
the opposite manner. After we have handled a variety of simple boundary conditions for the
heat equation and treated Fourier series, the student is prepared to study and appreciate
Sturm-Liouville Theory as a natural continuation of what has been learned without it.
Proceeding from examples to theorems may result in a book which is physically longer,
but students learn more rapidly and effectively this way. In short, it is easier to build from
the ground up than from the roof down. In the process, we may have sacrificed some degree
of elegance, but we have not sacrificed rigor. Nearly every basic result is proved rigorously
at some stage, or at least we give a reference (e.g., for the convergence of eigenfunction
expansions on manifolds). We certainly do not recommend proving everything in class,
since this would severely limit the range of the material covered, but instead the interested
student may be directed to the many detailed, thoroughly digestible proofs in the text.
On the point of rigor, we mention that many solutions of PDEs are expressible in terms of
integrals of Green’s functions against boundary and/or initial data. In most PDE texts,
such integral formulas are derived (if at all) under the assumption that solutions of the
PDEs actually exist. To be honest, one should have the tools to check that the functions
defined by such integral formulas actually solve the given problem. This necessarily entails
the use of Leibniz’s rule for differentiation under an integral, in particular when the interval
of integration is unbounded. One feature of this book, which appears to be absent in other
introductory texts, is that there is a complete proof of Leibniz’s rule (cf. Appendix A.3). In
place of Lebesgue Dominated Convergence Theorem, this proof uses an elementary version
of dominated convergence for Riemann integrals based on ideas originating in [Lewin, 1986,
1987]. Thus, the notion of Lebesgue measure and integration is avoided.

Solving problems is the major part of learning in any mathematical subject. This book
contains many problems which range from the purely routine to those which will challenge
even the most brilliant student. Sometimes one finds that although some students can
arrive at a solution to a problem through mimicking procedures, they still may not be able
to interpret or use the solution or even understand why the expression they have found
is actually a solution of the problem. We have tried to counter this tragedy by including
many exercises which require the student to think, draw some conclusions, and interpret
the results, instead of simply implementing purely computational procedures. Since some
students will do anything to get the answer in the back of the book, we have been sparing
with the answers. However, a solutions manual (with complete solutions to all but the
most trivial problems) is available to instructors only. We personally worked out each of
the problems.

Since the whole book cannot be covered in a single semester, instructors who are
limited to a single semester must decide which sections or chapters to cover. Given the
demand, instructors might consider the introduction of a second semester of PDEs. Below,
we summarize the material covered in the chapters and sections. Following this, some
suggestions are given on what sections must, should or could be included in a one-semester
or two-quarter course.
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Chapter-by-chapter synopsis and suggestions for the instructor

Chapter 1 (Review and Introduction): If the students have had a course in ODEs,
then Section 1.1 can be skipped, or assigned as reading. Some coverage of Sections 1.2 and
1.3 is necessary for a general overview of PDEs and their applications, and for an intro-
duction to certain topics, such as separation of variables and the superposition principle.
These concepts are used often in the sequel.

Chapter 2 (First-Order PDEs): For instructors who regard first-order PDEs as devoid
of any real application, we urge them to read the introduction to Chapter 2, before deciding
to skip Chapter 2 entirely. Not only are there wide applications to birth and death processes
(e.g., the evolution of population densities), continuum mechanics and the development
of shocks in traffic flow, but also the student sees how a change of variables can greatly
simplify a PDE. Incidentally, we elected not to include examples and drill exercises for
putting second-order, linear PDEs (with constant coefficients) into the standard normal
forms (e.g, by rotation of axes, etc.), for the simple reason that second-order PDEs which
arise in applications are already in a standard form. However, a complete statement
of the Classification Theorem is given in Section 1.2, and a complete proof is given in
the Appendix A.1. To compensate for lack of practice in change of variables drill for
second-order PDEs, there are plenty of change-of-variable problems for first-order PDEs
in Chapter 2. First-order PDEs which arise in applications are seldom in the standard
form of a parametrized ODE. While Chapters 3-9 do not depend on Chapter 2, instructors
should seriously consider doing at least Section 2.1 in which aug + buy + cu = f(z,y) is
solved, when a, b and c are constants. The case of variable coefficients is covered in Section
2.2, and the quasi-linear case is covered in Section 2.3. The fully nonlinear case is covered
in the optional Section 2.4.

Chapter 3 (The Heat Equation): Section 3.1 begins with a derivation of the heat
equation. The simplest initial/boundary-value problems are solved without first introduc-
ing Fourier series. Here, we use separation of variables to find product solutions of the heat
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equation which meet the homogeneous boundary conditions B.C. and then find a linear
combination which meets the initial condition. In Chapter 3, initial temperatures are cho-
sen so that they are expressible (via trigonometric identities) as finite linear combinations
of sines or cosines of the appropriate form. Students then naturally ask what can be done
if this is not the case. In other words, they are naturally motivated for the introduction
of Fourier series which is the topic of Chapter 4. In Section 3.2, uniqueness of solutions of
various initial/boundary-value problems for the heat equation is proved, by showing that
for homogeneous B.C. of the first or second kind, the mean-square of the temperature is
nonincreasing. The Maximum Principle provides a second approach. We first illustrate
the Maximum Principle through a number of examples and we show that it easily leads
to continuous (uniform) dependence of solutions on initial/boundary data. The proof of
the Maximum Principle is then given at the end of Section 3.2. Section 3.3 deals with
the case of various simple B.C. which are time-independent, but possibly inhomogeneous.
In Section 3.4, the case of time-dependent B.C. and heat sources are handled by means
of Duhamel’s principle. Section 3.4 can be skipped or covered later if time permits, and
Section 3.3 can be covered quickly and lightly. However, Section 3.1 is certainly part of
any first PDE course, and we strongly recommend that Section 3.2 be covered in some
detail.

Chapter 4 (Fourier Series and Sturm-Liouville Theory): Students see the need for
Fourier series in Chapter 3. In Section 4.1, we introduce the notion of orthogonality of
functions, and the definition of Fourier series of a function as a formal expression which
may or may not converge to the function. Many examples are computed, and the question
of convergence is motivated. An estimate for the number of terms needed to uniformly
approximate a C? function is stated (but the proof is deferred until Section 4.2). We provide
a technique for obtaining much sharper estimates by means of integral estimates of the
tail of a Fourier series. Section 4.2 contains detailed proofs of the convergence of Fourier
series under various assumptions. We gently introduce the difference between pointwise
convergence and uniform convergence. Pointwise convergence is proved for piecewise C*
functions and uniform convergence for continuous piecewise C! functions. Without the
luxury of time, we recommend that the lengthier proofs be skipped or assigned for reading.
However, certainly one should get across the general idea that the smoother a function is on
a circle, the more rapid is the convergence of its Fourier series. In Section 4.3, we introduce
Fourier sine and cosine series which are used to handle (at least formally) the case (left
dangling in Chapter 3) that the initial temperature was not a finite linear combination
of the appropriate form. It is emphasized that infinite sums of C? functions need not
be C2, and hence the formal solutions obtained need not be strict solutions. However,
by truncating the series at a sufficiently large number of terms one can often meet the
I.C. within any positive error, which is all that is needed for applications. The validity
of formal solutions under certain assumptions is deferred to Chapter 7. Sturm-Liouville
Theory is covered in Section 4.4. At this point the student is ready to savor this subject
which extends what is known already to the case of inhomogeneous rods and boundary
conditions of the third kind. We provide a convincing sketch of a proof of the infinitude of
the eigenvalues for Sturm-Liouville problems, by means of the Sturm Comparison Theorem.
Practically none of the rest of the book depends on Section 4.4, except the statement found
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in Chapter 9 (Section 9.5) that Bessel functions have infinitely many zeros. Thus, in the
face of time pressures, it is possible to omit Section 4.4 entirely, although one should at
least tell students what it is about. We have found that Section 4.3 can and should be
covered rapidly, and that one should stress the statements of the theorems in Section 4.2,
but not necessarily the details of the proofs. Section 4.1 should be covered in detail, as it
is frequently used later.

Chapter 5 (The Wave Equation): In Section 5.1, the wave equation for a transversely
vibrating string is derived from Newton’s equation. Some care is taken to explain why
the assumption of transverse vibrations actually implies a linear wave equation instead of
an approximately linear equation. The dubious assumption of “small” vibrations is thus
eliminated. The simplest initial/boundary-value problems for a finite string are solved.
Uniqueness of solutions of these problems is also proved in Section 5.1, using the energy-
integral method. In Section 5.2, we cover D’Alembert’s solution of wave problems on the
infinite string. Consequences of D’Alembert’s solution, such as finite propagation speed
are covered, and the method of images for semi-infinite strings is explained. For finite
strings, the method of images provides an alternative to the Fourier series approach. The
continuous dependence of solutions for the finite string on initial conditions is also an
easy consequence of D’Alembert’s formula and the method of images. In Section 5.3 a
variety of boundary conditions for the string are handled. Also, the inhomogeneous wave
equation (i.e., with forcing term) is treated via both Duhamel’s principle and the Fourier
series approach. Section 5.1 should be covered in some detail, with the complete derivation
possibly assigned as reading. Section 5.2 is equally crucial, but if time is running short
Section 5.3 can simply be summarized, so that students are aware of what is covered in
case they need it.

Chapter 6 (Laplace’s Equation): In Section 6.1, Laplace’s equation is motivated and
it is shown that solutions may be interpreted as steady-state temperature distributions.
The Dirichlet and Neumann problems are introduced. Section 6.2 concerns the solution of
these problems on a rectangle. Since students are familiar with separation of variables and
superposition, this material can be done quickly. Uniqueness and the Maximum Principle
are motivated and utilized, but proofs are deferred until Section 6.4. In Section 6.3,
we solve Dirichlet and Neumann problems on annuli and disks using polar coordinates.
The Mean-Value Theorem and Poisson’s Integral Formula are carefully proved, and the
regularity of harmonic functions is demonstrated. In Section 6.4, the Maximum Principle
for harmonic functions on bounded domains is proved along with continuous dependence
of solutions of the Dirichlet problem on boundary data. The importance of these results
has been amply demonstrated to students in the previous sections. Section 6.5 is on the
application of complex variable theory to Laplace’s equation. We assume no knowledge
of complex-variables. We do not cover Cauchy’s theorem, contour integration, or residue
theory, for the simple reason that we do not need it here. However, the intimate connection
between complex analytic functions and harmonic functions is brought out and exploited.
Moreover, the concept and use of conformal mapping to solve problems in steady-state
temperatures, fluid flow and electrostatics are handled without any difficulty. All of the
material in Chapter 6 is important, and if too much time is spent on material in previous
chapters, it may not be possible to cover all of Chapter 6. For a class of mostly engineers,
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it may be wiser to cover Section 6.5 instead of Section 6.4, if a choice must be made,
whereas for mathematics majors the reverse choice is desirable.

Chapter 7 (Fourier Transforms): It will take an exceptional class to reach Chapter 7 in
one semester, without skipping all but the most essential material in the previous chapters.
However, if students are likely to take a full complex variable course in the future, many
concepts in Chapter 6 will be treated in that course. Then, skipping much of Chapter 6
and proceeding with Chapter 7 becomes an attractive possibility. Of course, the possibility
of introducing a second semester (or more quarters) of PDEs should be contemplated. The
demand is there. In Section 7.1, we introduce complex Fourier series and define the Fourier
transform. Many examples are computed. In Section 7.2, we develop the basic properties
of Fourier transforms which make them a useful tool for finding solutions of PDEs (i.e.,
differentiation is carried to a multiplication operator, and multiplication of transforms
corresponds to convolution). The idea that the regularity of a function increases the rate
of decay of its Fourier transform (and vice versa), is brought out. Although, this is typically
regarded as an advanced topic, we treat it in an elementary way, and it is a close relative of
the idea (covered in Section 3.2) that the smoothness of a function on a circle increases the
rate of decay of its Fourier coefficients. Section 7.3 covers the Inversion Theorem, inverse
Fourier transforms and Parseval’s equality. But the proof of the Inversion Theorem is
deferred to a supplement at the end of Chapter 7. In Section 7.4, Fourier transforms
are applied to solving PDEs. One may wish to cover Sections 7.1 to 7.3 quickly and
concentrate on Section 7.4. Here, we solve the heat problem on the infinite rod, and the
Dirichlet problem for the half plane. We felt that it was a good idea to emphasize the fact
that Fourier transform methods not only presume that a solution of a problem exists, but
also that it has certain decay properties. Thus, integral formulas for solutions obtained
in this fashion should be checked independently through a careful application of Leibniz’s
rule for differentiating under the integral. For a class of mostly engineers, this point can
be made, without going through the details of the verification. Although a derivation of
D’Alembert’s formula for the wave equation is given in Chapter 5, we also show how to
get it by Fourier transform techniques and the Dirac delta distribution is discussed. In
Section 7.5, heat problems for semi-infinite and finite rods are solved via the method of
images. The validity of formal infinite-sum solutions, found in Chapter 4, is now handled
with ease. Also, Fourier sine and cosine transformations are introduced and applied.

Chapter 8 (Numerical Solutions of PDEs—An Introduction): While the solution
of PDEs by numerical methods could constitute a whole course, we offer an introduction
to the subject in Chapter 8. Our aim is not to present, without proof or motivation, a huge
number of algorithms. Instead, we have concentrated on the foundations of the numerical
approach, and we work mostly with the familiar heat equation to illustrate the nature and
possible pitfalls of the numerical approach. To broaden the horizons, we do provide an
optional overview of other numerical methods for other PDEs for the interested reader in
Section 8.4. In Section 8.1, the “big O” notation is introduced. There we focus on Taylor’s
Theorem which plays a fundamental role in the approximation of partial derivatives by
finite differences. This leads us to the approximation of PDE problems by a finite system
of equations for the values of the unknown function at grid points. For the heat equation,
these systems are easily solved by the explicit method in Section 8.2. Moreover, in the
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case of the heat equation, the discretization error (i.e., the difference of the numerical
solution from the actual solution) is proved to approach zero as the grid point separation
goes to zero, at least in the absence of round-off errors. In Section 8.3, we obtain exact
solutions for a finite grid by means of the theory of difference equations. We then examine
how systematic round-off errors lead to the conclusion that the best results are not always
obtained by taking the grid size as small as possible. Continuing with the simple case of
the heat equation, we obtain theoretical estimates for optimal grid sizes, which are born
out to be correct in concrete examples. We believe that it is better to discuss in some
depth a number of crucial issues for a single equation, than only briefly comment on a
lot of PDEs and techniques. Again, Section 8.4 provides some overview and plenty of
references for further study.

Chapter 9 (PDEs in Higher Dimensions): The fundamental ideas in Chapters 3
though 7 are extended in Section 9.1 in a straightforward manner to the case of several
cartesian spatial coordinates. We solve heat problems on rectangles and cubes, and con-
sider Laplace’s equation on a solid rectangle. Double Fourier transforms and series are
easily motivated and introduced. In Section 9.2, it is made clear that the primary ob-
jects from which solutions of the heat, wave and potential problems are constructed are
the eigenfunctions of the Laplace operator which meet the B.C.. This basic fact is often
hidden behind the process of separation of variable and the plethora of special functions
which thereby arise in various coordinate systems. A great variety of series expansions
for functions all fall into the category of eigenfunction expansions. In Section 9.2, we also
prove a uniform convergence result for double Fourier series, and discuss simple properties
of double Fourier transforms. In Section 9.3, we begin our study of the standard PDEs
in terms of spherical coordinates. The spherical harmonics are defined as eigenfunctions
of the Laplace operator on a sphere. They arise as the angular part of eigenfunctions of
the Laplace operator on space and can be expressed through associated Legendre func-
tions. We solve a number of heat and wave problems with spherical symmetry. The
three-dimensional version of D’Alembert’s formula is derived and Huygen’s principle is
discussed. The determination of all eigenvalues and spherical harmonics, dimensions of
eigenspaces, etc. is covered in Section 9.4. There is a complete proof of the uniform
convergence of the Laplace series for C? functions on a sphere. Moreover, a number of
problems with angular dependence (e.g., heat flow in a ball) are solved through the use
of spherical harmonics and spherical Bessel functions. In Section 9.5, we consider PDEs
in cylindrical coordinate systems and some more PDEs in spherical coordinates, but with
nontrivial potentials, such as Schrodinger’s equation. The special functions which arise in
the process are discussed. While spherical Bessel functions can be expressed in terms of
sines and cosines, the cylindrical Bessel functions (of integer order) cannot, which is why
we did not handle cylindrical coordinates before spherical ones. We consider a number of
applications, ranging from the vibrating circular drum, to the determination of the energy
levels and wave functions for the (nonrelativistic) hydrogen atom and the degeneracy of
the energy levels which forms the basis for the periodic table. Section 9.6 deals with the
standard heat, wave and potential problems on compact submanifolds with boundary in
R™. Laplace operators are defined on these objects in an easily understood way. Although,
we do not prove the existence theory for eigenfunctions and eigenvalues in this general set-



Preface

ting, some of the more readable references are cited. Admittedly, the eigenfunctions are
difficult to concretely compute or approximate, but once the eigenfunctions are given, the
solution of the standard heat, wave and potential problems on manifolds proceeds in a way
which is quite analogous to the many special cases covered in the rest of the book. This
last section essentially unifies and consolidates these special cases into a single framework.
Moreover, there is some discussion of Weyl’s asymptotic formula for the eigenvalues of the
Laplace operator, and the geometric information about the manifold which can be “heard”
from the eigenvalues which may be interpreted as frequencies of vibration.

In constructing a one-semester or two-quarter course, we suggest selecting sections
from the list below, keeping the indicated priorities in mind. In addition, Section 1.1
should be covered if your students are weak in ODEs. Sections which are marked with
stars can or should be covered in only 2 hours, whereas most instructors will want to
spend about 3 hours on the other sections. Leave time for tests and going over some of the
homework. Chapters 8 and 9 are probably best left for a second semester or possibly as
sources of projects for advanced, gifted and/or highly motivated students. In some schools
where students have strong backgrounds or interests in computers one may wish to cover
Chapter 8 in lieu of Chapter 7.

Crucial sections: 1.2, 1.3*, 3.1, 3.2, 4.1, 4.2, 4.3*%, 5.1, 5.2, 6.1*%, 6.2*, 6.3
Highly desirable sections: 2.1, 3.3*, 5.3, 6.4, 6.5, 7.1*, 7.2*, 7.3*, 7.4
Luxury sections: 2.2, 2.3, 2.4, 3.4, 4.4, 7.5

Differences between the International Press and Van Nostrand editions

The main difference between the current edition and the Van Nostrand edition is that
the book has now been reformatted in TEX to improve readability and appearance. In
doing this, we have very nearly preserved the pagination. Most of the figures have now
been “vectorized” so that they could be smoothly rescaled; the book is currently printed at
600 dpi instead of 300 dpi. In many places we have improved the clarity of the exposition.
Numerous smal/l errors and a few substantial errors have been corrected. Occasionally some
informative remarks and additional problems have been added. While we are not aware of
any errors that remain, we would very much appreciate hearing of any errors or suggestions
for improvements (email to bleecker@math.hawaii.edu and/or george@math.hawaii.edu).

We owe a special thanks to PDE and geometry expert, Field’s Medalist, colleague and
editor S.T. Yau and coeditor Julie Lynch for having great confidence in the book. We have
made every effort to insure that this confidence has not been misplaced.



Chapter 1

Review and Introduction

In this chapter, we review those aspects of ordinary differential equations (ODEs)
which will be needed in the sequel. We also provide an overview of the applications
of partial differential equations (PDEs), and introduce the reader to some elementary
techniques, such as separation of variables. The review of ODEs in Section 1.1 is self-
contained, since experience dictates that a remedial study of this material is often sorely
needed. Even those whose mathematical knowledge of ODEs is sufficient may find the
applied examples and problems (dealing with biology, fluid flow, electronics, mechanical
vibrations, resonance, etc.) interesting and challenging. Section 1.2 gives the reader a
perspective on the uses of PDEs in various scientific applications, such as gravitation,
electrostatics, thermodynamics, acoustics, and minimal soap film surfaces. Some of the
material (e.g., the use of Green’s functions and integral operators), will not be universally
appreciated upon a first reading. Indeed, students will find certain aspects (such as the
superposition principle) of Section 1.2 more illuminating at later stages in their course of
study. In Section 1.3, the studies of ODEs and PDEs are contrasted, with regard to the
differences in the typical forms for general solutions. We illustrate how side conditions are
used to extract particular solutions from general ones. Moreover, the method of separation

of variables is also covered in this section.





