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Preface

This is the first part of an introduction to analysis in two volumes, an
expanded version of the material of my courses Analysis I-III which I have
given in Heidelberg over the years.

The mathematics taught in these courses ranged from elementary calculus
to fairly advanced topics in functional analysis, measure theory and differen-
tial geometry. I have to admit, however, that I never managed to cover all
the material, that will be presented in the two volumes, in three semesters;
almost always a course in tensor analysis was offered as a continuation in the
fourth semester.

After two years the students then had a solid knowledge in classical analy-
sis, theory of differentiation in Banach spaces, measure theory and tensor ana-
lysis in semi-Riemannian manifolds enabling them to study more advanced
topics in mathematics as well as physics.

The present textbook comprises the material for a one and a half semester
course. After some fundamental concepts of logic, set theory and the real
numbers have been introduced, the actual analysis starts in Chapter 1. The
convergence of sequences and series is first examined in the real axis, then
generalized to Rn, and is finally treated, in great detail, in metric spaces resp.
Banach spaces.

In the next chapters, topological concepts—continuity, compactness,
connectedness—(Chapter 2) resp. differentiation in one variable (Chapter 3)
are presented.

Chapter 4 contains the important theorems of Arzelà–Ascoli and Stone-
Weierstraß as well as a section on analytic functions in several variables.

The last chapter deals with the Riemann integral. It is introduced for
Banach space valued functions—the definitions and proofs are the same as
in the real valued case, and the integration theory for regulated functions,
which is normally used to deal with vector valued functions, is avoided.

This textbook is intended for first year graduate students or for under-
graduates who later want to graduate in mathematics or physics. The formal
prerequisites to understand the book are very low, and are certainly fulfilled
by anyone who has passed high school successfully, but the learning curve
might be a little bit too steep for those who do not want to graduate in
mathematics or physics.
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I would like to thank Shing-Tung Yau who accepted the manuscript for
the International Series in Analysis and Hugh Rutledge from International
Press for the pleasant and cordial collaboration.

The present volume is a translation of the German edition.

Heidelberg, September 2003 Claus Gerhardt
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