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Sample size estimation for future studies using
Bayesian multivariate network meta-analysis
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Although systematic reviews of randomized clinical tri-
als (RCTs) are considered the pinnacle of evidence-based
medicine, RCTs are often designed to reach a desired level
of power for a pre-specified effect size, independent of the
current body of evidence. Evidence indicates that sam-
ple size calculations for a new RCT should be conducted
in the context of a systematic review and meta-analysis
of the existing body of evidence. This paper presents a
framework to estimate sample size and power for a future
study, based on a prospective multivariate network meta-
analysis (MNMA) of RCTs. The term “multivariate” refers
to powering on (potentially) multiple outcomes. Specifically,
a Bayesian MNMA is fit to the existing network and 1000
hypothetical trials are designed from the resultant poste-
rior predictive distribution of effect sizes. Thus, the future
RCT is designed in the context of the current network of
evidence. The approach is applied to a systematic review
of pharmacologic treatments for adult acute manic disor-
der. The analysis suggests that new trials should be de-
signed/powered within the context of either a multivariate
or univariate network meta-analysis, where the former is
preferred if researchers are interested in multiple primary
outcomes, or the network is subject to extensive missing
outcomes.

Keywords and phrases: Network meta-analysis, Multi-
variate meta-analysis, Bayesian, Clinical trials, Sample size.

1. INTRODUCTION

Randomized clinical trials (RCTs) are the foundation
of evidence-based medicine [1, 2]. As such, high quality
RCTs are often collected and synthesized in the form of
a systematic review and meta-analysis [2, 3]. Lower forms
of evidence may also be collected and analyzed via sys-
tematic reviews and meta-analyses (e.g., case series, obser-
vational, and cohort studies). The Cochrane collaboration
is a successful network that publishes such systematic re-
views that are considered the pinnacle of evidence-based
medicine, with medical decision-making relying on these re-
sults [1, 4].
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In practice, it is not common for a single study to reach
a decisive result. Trials may be underpowered, subject to
missing outcome data, or even stopped early. Often, subse-
quent trials or studies are designed to reach a desired level
of power in order to detect a pre-specified effect size through
sample size adjustment. However, new sample size calcula-
tions usually do not take into account the existing body of
evidence, nor the impact the new trial will have on the ex-
isting body of evidence. In the interest of efficiency, harm-
reduction, and cost-efficiency, researchers should consider
the influence their individual study will have on future sys-
tematic reviews, as well as the influence their findings will
have on medical decision making, given the current available
body of evidence [5–8].

A few meta-analytic frameworks have been developed
that make this suggestion. Sutton et al. [5] proposed es-
timating sample size using a hybrid framework. Specifically,
they used both fixed- and random-effects meta-analysis to
estimate a Bayesian posterior predictive distribution (PPD),
sample an effect size for a new trial, and calculate power
using simulations subsequently performed under a frequen-
tist framework. DeSantis and Zhu [6] extended this ap-
proach under a fully Bayesian setting, to network meta-
analysis (NMA) [9, 10]. Roloff et al. [7] introduced the con-
ditional probability (CP) method, which unlike the above,
does not require a simulation procedure; the CP is defined
as the probability that effect estimates from an updated
meta-analysis will exceed a pre-specified effect size, given
the pooled results of existing meta-analyses. Nikolakopoulou
et al. [8] extended the CP approach to the context of NMA,
assuming consistency in the network and common hetero-
geneity in old and new studies given multiple comparisons.
They investigated the power of a new meta-analysis in re-
lation to both the number of studies, and the compari-
son types in the network (direct vs indirect comparisons
of treatments), given a fixed sample size for the current
study.

These approaches should all serve as a guide on how to
estimate sample size for a new trial in the context of a
prospective meta-analysis. In scenarios where a systematic
review yields a large proportion of missing outcomes, for ex-
ample due to outcome reporting bias (ORB), trial design in
the context of multivariate meta-analysis may be preferable.
The issue of ORB is well known to afflict systematic reviews,
and its effects on bias in both pairwise and network meta-
analysis have therefore been well-studied [11–19]. Briefly,
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ORB may occur when an outcome of interest for a given
study was analyzed but not reported, perhaps due to lack
of significance or unfavorable directionality [11, 12, 17, 18].
When ORB is present within a systematic review, a prospec-
tive predictive sample size based on the PPD from univariate
meta-analysis, may not be optimal. To this end, sample size
could be estimated from multivariate meta-analysis or mul-
tivariate network meta-analysis (MNMA); these tools have
been proposed to accurately pool effect sizes in the con-
text of ORB, usually by borrowing power across correlated
outcomes [11–19]. Those approaches that operate within a
Bayesian framework are easy to implement in practice, are
well integrated into commercial and freely available soft-
ware, and naturally lend themselves to calculating posterior
predictive distributions [5, 6].

The objective of this paper is to present the framework
to estimate sample size and power for a future RCT based
on a prospective MNMA. The proposed framework is an
extension of the methods proposed by Sutton et al. [5] and
DeSantis and Zhu [6]. Using a previously published network
of 12 pharmacological treatments for acute manic disorder
[20], sample sizes for hypothetical 2-arm trials are simulated
under NMA and MNMA for fixed sample sizes, and power
is compared versus had the trials been designed in isolation
of the networks.

2. METHODS

2.1 Multivariate network meta-analysis
model

This Section introduces the MNMA model using the
method of Efthimiou et al. [15] and Hwang and DeSantis
[17] though any MNMA framework could likely be used so
long as the PPD can be estimated. Consider NT total treat-
ments in a network with a maximum of 3 outcomes. The
consistency equations of Lu and Ades [9] for each outcome
imply that the vector of pooled effect sizes can be written as
a function of basic parameters, which are treatment effects
relative to the reference treatment, i.e.,

β(B:C),l = β(A:C)l − β(A:B)l for l = 1, 2, 3.

In a random effects multivariate network meta-analysis, the
parameter of interest, βi,(B:C)l is a pooled log odds ratio of
treatment C relative to treatment B for outcome l in the
ith study. For 2-arm studies reporting 3 outcomes, Hwang
and DeSantis [17] the MNMA model can be written, Y =
Xβ + ν,
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where Y is the vector of observed effects (log odds ratios),
X is a design matrix that represents all treatment contrasts
in the network, β is an (NT − 1) × 3-dimensional vector
of basic parameters, ν is the combined vector of random
errors and additional variations due to heterogeneity, with
ν ∼ N(0, Σ). In this model, the heterogeneity is assumed
to be constant between different comparisons. The MNMA
approach uses the design matrix X to appropriately map
the observed treatment comparisons, using basic param-
eters, and the variance-covariance matrix, Σi. To reduce
the burden of parameter estimation, Efhthimiou et al.
[15] reduces the complexity of the variance-covariance
matrix using a homogenous variance assumption. The
simplified variance-covariance matrix for 3-arms and 3 out-
comes that compares treatments A, B, and C is given as,
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Figure 1. Diagram representing the sample size estimation process in a context of the prospective meta-analysis.

where υi,AB,1 represents ψ2
1 + s2i1 for outcome 1 in the ith

study between treatment A and B comparison. With more
than 2 outcomes, there is a singular estimated matrix prob-
lem. Thus to ensure the variance-covariance matrices are
positive definite, the Cholesky decomposition is used. This
is the MNMA used in the analysis described below. More
technical detail can be found in the references [15, 17].

2.2 MNMA sample size and power
estimation framework

Posterior predictive distributions are generated from a
MNMA fit using Markov chain Monte Carlo (MCMC) sam-
pling, and operating characteristics (e.g. power and sample
size) for a new trial are based on whether the pooled evi-
dence incorporating the new trial would result in a conclu-
sive or decisive finding [5, 6]. The term “decisive” is used
here to imply Bayesian significance, or the exclusion of the
null effect size by the 95% credible interval (CI).

The simple framework to estimate sample size and power
based on a prospective MNMA is depicted in Figure 1, and
the proposed algorithm is given in 6 steps:

1. Run a Bayesian MNMA on the existing body of evi-
dence (described for the below data example using [17],
noting one can use any of the methods presented in [14–
18] could be used if outcomes were commensurate with
those methods).

2. Predict the effect size in a future trial. That is, within
the MCMC sampler, sample an estimate, θXY ;l(new),
from the PPD given by,

(
θXY ;1(new)

θXY ;2(new)

)

∼ N

((
βXY ;1

βXY ;2

)
, Φ =

(
ψ2
1 ρgψ1ψ2

ρgψ1ψ2 ψ2
2

))
,

where βXY ;l is the true effect size for outcome l (for
l = 1, 2 in this setting), Φ is the covariance matrix
where ψ represents the variation due to heterogeneity
between studies, ρg is the global correlation parameter,
and X &Y are two treatments of interest for future

study (where X is regarded as the baseline treatment).
As previously studied, the variation due to heterogene-
ity, ψ, is not exactly equivalent to the between-study
variance in the standard hierarchical model although
it can be comparable [14, 15, 17]. In the Bayesian set-
ting, uncertainty in β, ρg, and ψ would have propagated
through the Bayesian MNMA model to the posterior
predictive distribution of θXY ;l(new) for a new study.
The PPD is therefore more overdispersed than the pos-
terior distribution of θXY ;l, and is probably the best
“guess” for designing a future trial.

3. Given multiple samples from the PPD, θXY ;l(new), sim-
ulate a new study with a complete outcome vector.
Assuming the baseline (X, e.g., placebo) event rate
PX;l(new) is known, calculate the event rate within
treatment Y , PY ;l(new), for each outcome as follows,

PY ;l(new) =
((PX;l(new)/(1− PX;l(new)))× eθXY ;l(new))

(1 + (PX;l(new)/(1− PX;l(new)))× eθXY ;l(new))
.

In practice, PX;l(new) are usually unknown but
PX;l(new) can be estimated from existing trial data
or by eliciting expert opinion. Using the estimates
of PX;l(new) and PY ;l(new), generate a new binomial
dataset according to a fixed set of sample sizes. Employ
a Gaussian Copula distribution to generate correlated
binomial outcomes (if powering on multiple outcomes is
desired), using a previously sampled global correlation
coefficient, ρg [18].

4. Run an updated MNMA. That is, combine the new
simulated study to the existing network and run
a new MNMA to update the posterior distribution
(e.g., posterior mean and 95% credible intervals) of
βXY ;l(updated).

5. Run B simulations for the user-determined sample
sizes. The procedure of sampling a predicted effect,
θXY ;l(new), simulating a future study, and running an
updated MNMA with the additional study, (i.e. steps
2–4), is repeated B times for each user-defined fixed
sample sizes. The estimated proportion of times over B
simulations that the estimated effect size βXY ;l(updated)

is decisive for each outcome in MNMA (i.e., proportion
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of B total times the 95% CI excludes 0 for log odds
ratio) is the proposed power of the study for each out-
come. A lower bound for B could be 300 as MNMA can
have long computation time depending on the consti-
tution of the network.

6. Repeat steps 2–5 for each sample size until the desired
power is obtained. In the following study, sample sizes
are fixed at clinically feasibly sizes of (30, 50, 100, 150,
200, 300, and 500).

2.3 Data Description and illustration

The application is a published network of interven-
tions for acute manic disorder [20]. The network com-
prises 68 randomized controlled trials that compare the ef-
fectiveness and tolerability of 13 active treatments and a
placebo. Treatments include olanzapine, paliperidone, que-
tiapine, divalproex, aripiprazole, carbamazepine, haloperi-
dol, ziprasidone, asenapine, lithium, lamotrigine, topira-
mate, and gabapentin [20]. The majority of studies (50) are
2 arm trials while 18 are 3 arm trials. A total of 16,073 pa-
tients are included in the network. The outcomes for each
study are response and dropout. Response is defined as the
proportion of patients whose mania symptoms were reduced
at least 50% from baseline. Dropout is defined as the pro-
portion of patients leaving the study for any reason. Both
outcomes are reported as binary and are parametrized as log
odds ratios (LOR) for the purpose of meta-analysis. While
one study did not report dropout, 18 studies did not re-
port a binary response. Given the unusually high proportion
of non-report of the primary outcome (reduction in symp-
toms), it is of interest to design the future study for a bi-
variate outcome, such that dropout may inform the sample
size in addition to the primary outcome.

In a previously conducted univariate network meta-
analysis (UNMA) of these data [20], most of the active treat-
ments were shown to be superior to the placebo, with the ex-
ception of lamotrigine and topiramate. Those results are also
consistent with the bivariate NMA reported by Efthimiou
et al. [15] Following closely this work, the current analysis
designs two different hypothetical 2-arm trials comparing
the active treatments that were previously shown superior
to placebo. The first hypothetical trial is a comparison be-
tween olanzapine and lithium. Olanzapine is often consid-
ered a first-line choice with paliperidone due to high efficacy,
but results from univariate [20] and multivariate [15] NMA
showed it was not significantly superior to lithium (which
has been used in the treatment of acute bipolar mania for
over 50 years and serves as the traditional treatment op-
tion [21]). Although lithium is underused due to relatively
slow response and poor tolerability, it is still regarded as a
gold-standard comparator for other newer agents [21, 22].
Thus a new trial comparing olanzapine vs lithium could be
of interest for researchers in order to provide a rationale
for choosing between either treatment as a first-line ther-
apy. The second hypothetical trial is a comparison between

Figure 2. Posterior mean log odds ratio and 95% credible
interval for UNMA (red and dotted) and multivariate NMA
(blue and solid) comparisons. A log odds ratio <0 favors the
second treatment and log odds ratio excluding zero indicates
a significant difference. LIT, OLA, DIV, and CBZ denote

lithium, olanzapine, divalproex, and carbamazepine,
respectively.

carbamazepine and divalproex. Both treatments are anti-
convulsants that have been shown to be equally effective in
treating mixed and classic mania [21]. Although they are
potentially equivalent in their effects, the effectiveness of
one over the other has not been established. Thus, the be-
low reports on hypothetical trial designs comparing these
treatments, based on the existing multivariate network of
evidence.

3. RESULTS

Figure 2 presents the results from applying UNMA and
MNMA using the approaches and code presented in the
Methods Section adapted from [15, 17]. The univariate anal-
ysis only considers treatment response (reduction in ma-
nia symptoms greater than 50%). The multivariate analysis
considers both treatment response and discontinuation. The
pooled posterior mean ORs (95% CIs) for lithium vs olanza-
pine are −0.18 (−0.88, 0.59) and −0.22 (−0.89, 0.44) from
univariate and multivariate NMA, respectively. The pooled
LORs for the divalproex vs carbamazepine comparison are
0.22 (−0.47, 0.90) and 0.15 (−0.52, 0.77), respectively. The
results from both approaches are directionally similar, which
is expected, but there is some difference in the actual poste-
rior mean and width of the 95% credible intervals. The forest
plot in Figure 2 demonstrates that the multivariate analysis
improves the precision of estimates by narrowing the CIs,
consistent with prior reports [15, 17]. Furthermore, point
estimate changes from fitting the MNMA may be due to a
reduction in reporting bias achieved via borrowing power
from the correlated (secondary) outcome that is measured
in every trial except for one. Since neither 95% CI excludes
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Figure 3. Power (y-axis) and sample size curves for studies of Olanzapine vs Lithium and Carbamazepine vs Divalproex
designed under a new univariate and multivariate network meta-analysis.

Figure 4. Power for the design of a new trial with sample size 1000. The upper triangle illustrates power based on updated
multivariate NMA and the lower triangle illustrates power based on updated UNMA. Abbreviations are: (ARI, aripiprazole;
ASE, asenapine; CBZ, carbamazepine; VAL, divalproex; HAL, haloperidol; LAM, lamotrigine; LIT, lithium; OLZ, olanzapine;

PBO, placebo; QTP, quetiapine; PAL, paliperidone; TOP, topiramate; ZIP, ziprasidone).

zero, it is straightforward to conclude from both UNMA and
MNMA that there is no significant difference in treatments.

The power estimation simulation for a new trial, as de-
tailed in the Methods, is applied to the two hypothetical
comparisons. Figure 3 depicts the power at a fixed sample
sizes of 2-arm trials resulting from 300 simulations of trials
for the treatment comparisons in Figure 2. A new trial of
these treatments designed in the context of MNMA would
have very low power (less than 0.3 even at N = 500 per
group), which is consistent with posterior mean observa-
tions from Figure 2. Further, Figure 3 shows that the power
estimates from a hypothetical trial of carbamazepine vs di-
valproex designed in the context of MNMA are consistently
lower than those designed in the context of UNMA (Fig-

ure 3, right side plot). This will not be true as a general
rule, but is true for the current study since the inclusion of
the second outcome actually decreases the effect size of the
primary outcome (reduction in mania symptoms) for this
treatment comparison. Both the UMNA and MNMA power
estimates for a fixed sample size are also lower than if the
trial were to be designed in isolation of the network, or if
the trial were to be designed based on the posterior mean
effect size (which is underdispersed, data not shown).

Figure 4 considers all hypothetical 2-arm future trials of
existing treatments for mania just for completeness. Each
2-arm treatment comparison is represented by row and col-
umn, and each box entry is the simulated power resulting
from enrolling N = 2000 patients (1000 per group), using
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the simulation paradigm outlined in the Methods. The up-
per triangle displays the power resulting from designing the
trial via a multivariate approach while the lower triangle
displays the power resulting from designing the trial via a
univariate approach. It is notable that there is no clear su-
periority of either method – the benefit of designing the
trial under a multivariate vs univariate approach truly de-
pends on whether there is likely to be outcome reporting
bias. Figure 4 shows that most trials that compare active
treatment to placebo (row 1, column 1) would be highly
powered, as expected. Further, trials of lamotrigine, and
topiramate would be highly powered. However, hypothet-
ical trials of active treatments haloperidol, carbamazepine,
olanzapine, paliperidone, and aripiprazole would add little
to the network of evidence. When planning a trial, clini-
cians could use Figure 4, whether under UNMA or MNMA,
to determine whether the treatments they are interested in
comparing would result in sufficient power for a fixed set
of operating characteristics, in light of the current body of
evidence.

4. DISCUSSION

The application of network meta-analysis has become
standard practice in systematic reveiws of RCTs[9, 10, 15,
17, 18]. Although power and sample size estimation for a
newly proposed clinical trial in the context of an updated
NMA has been proposed and is an appropriate way to plan
a new study, it has been shown that pooled estimates from
NMA could also be biased or inefficient due to the presence
of outcome reporting bias [14, 15, 17, 18]. As a result, new
trials designed from a potentially biased network may lead
to either over- or under-estimated power calculations for a
given sample size.

This paper presents an easy-to-adopt approach for esti-
mating power and sample size based on a prospective multi-
variate network meta-analysis [15, 17]. The software used in
this paper is publicly available and downloadable from both
the original paper and from GitHub [17, 25]. We primarily
advocate the use of MNMA when multiple outcomes are of
interest in designing an RCT (for example, the joint outcome
of efficacy and discontinuation, which are often analyzed in
mental health RCTs), or when primary outcomes of interest
are unreported for a large proportion of the studies in the
existing network.

The current MNMA framework for trial planning uti-
lizes previously proposed Bayesian meta-analytic procedures
[5, 6, 15, 17]. The approach offers benefits over the pre-
viously proposed conditional probability methods [7, 8] –
adapting the CP method in the context of a MNMA would
be computationally challenging due to correlation between
multiple outcomes and the presence of multiple (>2) arms
within a study.

This study additionally examines how missingness of trial
data, likely due to ORB, impacts power and sample size es-
timation in a prospective manner using an example in acute

mania. In the presences of missing outcomes, it has already
been well-studied that the multivariate approach results in
less biased and more accurate pooled meta-analytic effect
sizes; it is therefore also reasonable to assume it results in
different prospective power estimates than the univariate ap-
proach. In the acute mania example, hypothetical trials of
olanzapine vs lithium and carbamazepine vs divalproex, the
difference in posterior mean ORs (point estimates) between
the univariate and multivariate NMA, led to considerable
changes in power estimate for a new trial.

There are several limitations of the current study. First,
the approach outlined in this paper is not applicable to novel
treatments (for which effect sizes versus existing treatments
would be completely unknown). However, if a novel treat-
ment were under study (and not part of the existing net-
work), the power of a future trial could still be estimated
in the context of the network. That is, in designing a study
of a novel treatment, one could still utilize the existing in-
formation for the comparator treatment of interest. Sec-
ondly, estimating sample size based on prospective MNMA
versus UNMA [6] is computationally more challenging and
time consuming, which could limit its utility especially for
large networks. However, running simulations in parallel on
a computer cluster is straightforward, and decreases com-
putation time. Further, our recently published software for
Bayesian MNMA that accommodates any number of arms
and outcomes could alleviate the computational or coding
challenge for applied researchers attempting to fit this com-
plex model [17, 25].
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