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A flexible class of multivariate meta-regression models are
proposed for Individual Patient Data (IPD). The method-
ology is well motivated from 26 pivotal Merck clinical trials
that compare statins (cholesterol lowering drugs) in com-
bination with ezetimibe and statins alone on treatment-
näıve patients and those continuing on statins at baseline.
The research goal is to jointly analyze the multivariate out-
comes, Low Density Lipoprotein Cholesterol (LDL-C), High
Density Lipoprotein Cholesterol (HDL-C), and Triglycerides
(TG). These three continuous outcome measures are corre-
lated and shed much light on a subject’s lipid status. The
proposed multivariate meta-regression models allow for dif-
ferent skewness parameters and different degrees of freedom
for the multivariate outcomes from different trials under a
general class of skew t-distributions. The theoretical prop-
erties of the proposed models are examined and an efficient
Markov chain Monte Carlo (MCMC) sampling algorithm is
developed for carrying out Bayesian inference under the pro-
posed multivariate meta-regression model. In addition, the
Conditional Predictive Ordinates (CPOs) are computed via
an efficient Monte Carlo method. Consequently, the loga-
rithm of the pseudo marginal likelihood and Bayesian resid-
uals are obtained for model comparison and assessment, re-
spectively. A detailed analysis of the IPD meta data from
the 26 Merck clinical trials is carried out to demonstrate the
usefulness of the proposed methodology.

Keywords and phrases: Collapsed Gibbs, CPO Identity
II, Heterogeneity, Multi-dimensional random effects, Multi-
ple trials, Outlying trials.

1. INTRODUCTION

According to the National Vital Statistics Reports (Heron
2019) cardiovascular disease (CVD) continues to be the lead-
ing cause of death for both men and women. This is the case
in the U.S. and worldwide. More than half of all people who
die due to heart disease are men. It has been confirmed that
increased low density lipoprotein cholesterol (LDL-C) is an
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independent risk factor for CVD. LDL-C lowering has been
consistently shown to reduce the risk of CVD. One large
meta-analysis (Baigent et al. 2010) of statin clinical trials
shows a progressive reduction in risk of major CVD events
with lower on-treatment LDL-C levels. Although LDL-C is a
primary cause of CVD, other risk factors contribute, as well,
for example, high-density lipoprotein cholesterol (HDL-C)
and triglycerides (TG). Large cohort studies show a strong
and inverse relationship of HDL-C levels with the risk of
incident CVD independent of other lipids. HDL-C is pos-
itively associated with a decreased risk of coronary heart
disease (CHD). As defined by the US National Cholesterol
Education Program Adult Treatment Panel III guidelines
(ATP III 2001), an HDL-C level of 60 mg/dL or greater
is a negative risk factor. A long-standing association ex-
ists between elevated triglyceride levels and CVD (Austin
et al. 1998; Sarwar et al. 2007). In a meta-analysis of 17
studies, increased triglyceride levels were associated with
increased coronary disease risk in both men and women, af-
ter adjustment for HDL-C and other risk factors (Hokanson
and Austin 1996). A randomized, controlled clinical trial
REDUCE-IT (Bhatt et al. 2019) has demonstrated that
intervention to low triglyceride level is associated with re-
duced CVD events. Among lipid-lowering drugs, statins are
the cornerstone of therapy. Ezetimibe is the most commonly
used nonstatin agent. It lowers LDL-C levels by 13% to 20%
and has a low incidence of side effects (Cannon et al. 2015;
Kashani et al. 2008).

Meta-regression (MR) of individual patient data (IPD)
is an effective modeling tool for explaining heterogeneity
between trials, synthesizing evidence across studies, investi-
gating individual-level interactions, or identifying subgroups
(Simmonds and Higgins 2007; Ritz et al. 2008; Kim et al.
2013; Riley et al. 2015; Burke et al. 2017; Belias et al. 2019;
Ibrahim et al. 2019). In dealing with IPD multivariate meta-
data, it is often the case that the data may be highly skewed
and or have heavy-tailed and non-normal distributions to
properly model certain response variables which may have
skew and/or heavy-tailed distributions.

The modeling framework proposed here is motivated from
multivariate IPD data from 26 Merck clinical trials for
cholesterol lowering drugs. In our application, we consider a
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three-dimensional continuous response, in which some com-
ponents of the response variable are heavy-tailed and/or
skew distributions, and some components may have sym-
metric and/or light tailed distributions. We do not know
which are which in advance and our hope is to develop a
model that accommodates this flexibility. Thus, in these set-
tings, one needs more complex models than the traditional
linear mixed model. There is abundant literature on using
skew and/or heavy tailed distributions for modeling univari-
ate and or multivariate data (Chen et al. 1999; Branco and
Dey 2001; Azzalini and Capitanio 2003; Sahu et al. 2003;
Genton 2004; Adcock 2004; Kim et al. 2008; Arellano-Valle
and Genton 2010; Chang and Zimmerman 2016), but sparse
in the multivariate MR setting (Kim et al. 2013; Ibrahim
et al. 2019). One of the challenges of modeling skew and
heavy tailed distributions in the MR setting is that one
needs to develop a flexible class of models that allow cer-
tain components of the multivariate response to have skew
and/or heavy-tailed while allowing for other components to
have symmetric and/or light-tailed distributions, while at
the same time, capturing heterogeneity between trials via
appropriate random effects. Since the skewness and heavi-
ness of the tails will not be known in advance, one needs to
also model the skew parameters and scale parameters ap-
propriately to correctly capture the data structure in this
complex multivariate MR setting.

Instead of using a Box-Cox transformation on the multi-
variate response variables as in Kim et al. (2013), we extend
the multivariate skew MR models of Ibrahim et al. (2019)
to develop a flexible class of multivariate MR models that
accommodate skewness and heavy tailed distributions for
multivariate meta-data. Under the proposed models, we first
assume that the skewness parameters, the covariance matri-
ces of the multivariate responses, and the degrees of free-
dom in the multivariate t distributions for the error terms
are different across trials at the first stage, and then assume
hierarchial priors for the multivariate random effects, the
skewness parameters, the covariance matrices, and the de-
grees of freedom at the second stage. The proposed models
are very flexible and general. As empirically shown in Sec-
tion 5, the proposed model leads to a substantial gain in
the goodness-of-fit of the multivariate IPD data from the
26 Merck clinical trials. Due to the complexity and com-
putational challenge of the proposed models, an efficient
Markov chain Monte Carlo (MCMC) sampling algorithm
is developed for sampling from the posterior distribution of
the model parameters. Moreover, one needs to develop and
use model assessment tools to examine and find the best
fitting models. In this paper, we consider the Conditional
Predictive Ordinate (CPO) and develop its computational
implementation for the proposed model. It is shown that
CPO along with our flexible modeling framework identifies
a more suitable model than a traditional MR model.

The rest of the paper is organized as follows. In Section
2, we discuss the Merck cholesterol data in detail. Sections

3.1–3.2 lay out the modeling details of our proposed mul-
tivariate skew heavy-tailed random effects meta-regression
model, the prior distributions, properties of the proposed
model as well as a flow diagram explaining all of the com-
ponents of the model. Section 3.3 develops the likelihood
function and joint posterior distribution of all the parame-
ters. Section 4.1 develops new analytic and computational
results for CPO, and Section 4.2 gives details of the MCMC
computational development. Section 5 presents a detailed
analysis of the cholesterol data showing that our proposed
model provides a better interpretation and fit over the ex-
isting MR model. We close the paper with a discussion in
Section 6.

2. THE CHOLESTEROL DATA

We consider the individual patient data (IPD) from
26 Merck-sponsored double-blind, randomized, active or
placebo-controlled clinical trials on adult patients with pri-
mary hypercholesterolemia, which were analyzed by Kim
et al. (2013) and Ibrahim et al. (2019). The IPD data consid-
ered in our analyses are a subset of the meta-data published
in Leiter et al. (2011). The citations of the primary papers
published in clinical journals for these 26 trials can be found
in Leiter et al. (2011). A detailed summary of the covariates
was provided in Tables 1 and 2 of Kim et al. (2013).

The primary goal of these clinical trials was to evalu-
ate the LDL-C lowering effects of ezetimibe (which works in
the digestive tract) in combination with statin (which works
in the liver) in comparison with statin alone on treatment-
näıve patients at baseline (on a first-line therapy) or patients
who underwent washout of previous lipid-modifying ther-
apy at baseline (on a second-line therapy). In our analyses,
different statins and their doses are combined to form the
“statin” and “statin + ezetimibe” treatment groups. Eze-
timibe (EZE) is available at only one dose of 10 mg, and the
statins used in these trials included simvastatin, atorvas-
tatin, lovastatin, rosuvastatin, pravastatin, and fluvastatin.
Statin potency describes the chemical/medicinal strength of
the statin, and it was categorized into three potency classes
(low, medium, and high). The covariates include treatment
(trt: 0 = Statin and 1 = Statin + EZE), baseline LDL-
C (bl-ldlc), baseline HDL-C (bl-hdlc), baseline TG (bl-tg),
age, race (White (reference), Black, Hispanic, and Other),
gender (Female: 0 = male (reference), 1 = female), diabetes
(DM: 0 = No, 1 = Yes), coronary heart disease (CHD: 0 =
No, 1 = Yes), body mass index (BMI), statin potency (low
(reference), med (potency2), and high (potency3)), and trial
duration (duration) (6–12 weeks). Tables 1 and 2 of Kim
et al. (2013) show a considerable amount of heterogeneity
in the covariates across the trials. Therefore, to examine the
treatment effects, there is a need to adjust for these covari-
ates. We consider three primary outcome variables including
percent changes from baseline in LDL-C, HDL-C, and TG.
For ease of presentation, we simply denote these three out-
come variables by LDL-C, HDL-C, and TG. As empirically
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shown in Kim et al. (2013) and Ibrahim et al. (2019), skew
and heavy-tailed distributions are needed for modeling these
three primary outcome variables.

3. MULTIVARIATE META REGRESSION
MODELS

Consider K randomized trials, where each trial has two
treatment arms (“Statin” or “Statin + EZE”), and patients
in each trial were either all on statin or all not on statin
prior to the trial. The sample size of the individual patient
data for the kth trial is nk. Let yik = (yi1k, . . . , yiJk)

′ denote
a J-dimensional vector of the responses for the ith patient
in the kth trial. Also let trtik = 1 if the ith patient received
“Statin + EZE” and 0 if “Statin” alone, and onstatink =
1 if patients were on statin and 0 if not on statin prior
to the trial. Furthermore, let xijk denote a pj-dimensional
vector of covariates for the jth response corresponding to
the ith patient, and βj = (βj1, . . . , βjpj )

′ is the vector of
fixed effects regression coefficients corresponding to the pj
covariates. Let wijk denote a qj-dimensional vector for the
random effects.

3.1 Preliminary

The multivariate skew meta-regression model proposed
by Ibrahim et al. (2019) is given by

yijk = [γjk0 + γjk1trtik](1− onstatink)

+ [γjk2 + γjk3trtik]onstatink

+ δj(zijk − E[zijk]) + x′
ijkβj + εijk,

(εi1k, . . . , εiJk)
′|λik ∼ N(0, λ−1

ik Σ),

λik ∼ Gamma(ν/2, ν/2),(3.1)

where zijk|ψik follows an exponential distribution with
mean 1

ψik
, ψik ∼ Gamma(τ + 1, τ), where Gamma(a, b)

denotes the gamma distribution with mean a/b and vari-
ance a/b2, and γjk = (γjk0, γjk1, γjk2, γjk3)

′ ∼ N4(γj ,Ωj)
with γj = (γj0, γj1, γj2, γj3)

′. The model in (3.1) assumed
that zi1k, . . . , ziJk are dependent as well as the same covari-
ance matrices, skewness parameters, and degrees of freedom
across K trials. Let λk =

∑nk

i=1 λik. Following Ibrahim et al.
(2019), we define

(3.2) λ∗
k = (λk − nk)/(nk/(ν/2))

1/2.

Then, we have E[λ∗
k] = 0 and Var(λ∗

k) = 1 a priori,
where the expectation and variance are taken with re-
spect to Gamma(nkν/2, ν/2), and consequently, λ∗

k approx-
imately follows the standard N(0, 1) distribution. Figure 4
of Ibrahim et al. (2019) shows the boxplots of the λ∗

k’s from
the posterior distribution under the skew t model in (3.1)
with τ = 30 and an unstructured Σ for the cholesterol data.
From these boxplots, it was found that the posterior dis-

tributions of the λ∗
k’s substantially depart from their prior

distributions for three trials. The reasons for such a dis-
crepancy between the prior and posterior distributions of
λ∗
k could be two-fold: (i) outlying trials or (ii) lack of fit

due to the use of the same degrees of freedom ν across all
trials.

3.2 Hierarchical skew heavy-tailed
multivariate meta regression models

We propose the following flexible hierarchical skew
heavy-tailed multivariate meta regression models as follows.

Stage 1: Model for Multivariate Responses

yijk = x′
ijkβj +w′

ikγjk + δjk(zijk − E[zijk]) + εijk,(3.3)

where γjk = (γj1k, ..., γjqjk)
′ represents the vector of qj-

dimensional random effects for the jth response, δjk is a
skewness parameter for the jth response in the kth trial,
zijk is the skewness latent variable with the expected value
E[zijk], and εik = (εi1k, . . . , εiJk)

′ is the vector of error
terms. We assume

εik | λik ∼ N
(
0, λ−1

ik Σk

)
and

λik ∼ Gamma(νk/2, νk/2),(3.4)

where Σk is a J × J positive definite covariance matrix and
νk > 0 is an unknown parameter. In (3.4), νk corresponds
the degrees of freedom and the variance of εik is finite for
all νk > 2. Also, in (3.3), we assume that

(3.5) zijk|ψik ∼ E(ψik) and ψik ∼ Gamma(τ + 1, τ),

where E(ψik) denotes an exponential distribution with
mean 1

ψik
and Gamma(τ + 1, τ) denotes a Gamma dis-

tribution with mean τ+1
τ and variance τ+1

τ2 . Under this
assumption, E[zijk] = 1 and Var(zijk) = τ+1

τ−1 for

τ > 1. Let zδ
ik = (zδi1k, . . . , z

δ
iJk)

′ = (δ1k(zi1k −
E[zi1k]), . . . , δJk(ziJk −E[ziJk]))

′. The covariance matrix of
zδ
ik is given by

Var(zδ
ik) =

τ

τ − 1
diag(δ21k, . . . , δ

2
Jk) +

1

τ − 1
δkδ

′
k,(3.6)

where δk = (δ1k, . . . , δJk)
′ for k = 1, . . . ,K. From (3.6), we

note that the correlations of the responses, yijk, depend
on the kth skewness parameter δjk, and the zijk’s are
independent when τ → ∞. We further assume that γjk,
zijk, and εik are independent.

At Stage 2, models for the random effects, covariance
matrices, skewness parameters, and degrees of freedom are
specified as follows.

Stage 2a: Model for Random Effects

(3.7) γjk ∼ N(γj ,Ωj),
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where γj = (γj1, ..., γjqj )
′ is the overall mean vector of

γjk and Ωj is a qj × qj covariance matrix of the random
effects γjk.

Stage 2b: Model for Covariance Matrices

(3.8) Σ−1
k ∼ WishartJ (υ, (υ − J − 1)Σ) ,

where Σ is a J ×J overall covariance matrix and υ > J +1.
Also Σk has prior expectation E[Σk|Σ] = Σ when υ > J+1.
The model (3.8) is attractive as it allows for “borrowing
of strength” across trials through the common second-level
covariance matrix Σ and it also accounts for the heterogene-
ity of the within-study covariance matrices among different
trials at the same time. The parameter υ in (3.8) controls
the amount of borrowing across trials. The larger the value
of υ, the more the within-trial covariance matrices borrow
strength from different trials. Note that WishartJ (d0, S0)
denotes the Wishart distribution with mean d0S0. That is,
π(Σ−1

k |d0, S0) ∝ |Σ−1
k |(d0−J−1)/2 exp

(
− 1

2 tr(S
−1
0 Σ−1

k )
)
.

Stage 2c: Model for Skewness Parameters

δjk ∼ N
(
δj , σ

2
δj

)
,(3.9)

where −∞ < δj < ∞ is the overall skewness parameter for
the jth response and σ2

δj
> 0 is the variance parameter,

controlling the amount of “borrowing” across trials for
within-trial skewness parameters for the jth response.

Stage 2d: Model for Degrees of Freedom

(3.10) νk ∼ Gamma(νa, νa/νb),

where νa > 0 controls the amount of borrowing across trials
and νb > 0 is the overall degrees of freedom. Under (3.10),
the prior mean of νk is E[νk] = νb.

At Stage 3, the prior distributions of the hyperparame-
ters for the random effects, covariance matrices, skewness
parameters, and degrees of freedom, which are proposed at
Stage 2, as well as the regression coefficients, are specified
as follows. Let δ = (δ1, . . . , δJ)

′ and σ2
δ = (σ2

δ1
, . . . , σ2

δJ
)′.

We assume that β, γ, δ∗, Σ∗, ν∗, τ , and Ω are independent
a priori.

Stage 3a: Prior distributions of the Hyperparame-
ters for Random Effects

γ ∼ NqJ(0, c1IqJ) and Ωj
−1 ∼ Wishartqj (d1, S1),(3.11)

where q =
∑J

j=1 qj .

Stage 3b: Prior distributions of the Hyperparame-
ters for Covariance Matrices

υ ∼ Gamma(a1, b1) and Σ ∼ WishartJ(d2, S2).(3.12)

Stage 3c: Prior distributions of the Hyperparame-
ters for Skewness Parameters and Latent Variables

δ ∼ NJ(0, c2IJ ), σ
2
δj ∼ IGamma(a2, b2), and

τ ∼ Gamma(a3, b3)1(τ > 1),(3.13)

where IGamma(a, b) denotes the inverse gamma distri-
bution with mean b/(a − 1) when a > 1 and variance
b2/[(a− 1)2(a− 2)] when a > 2.

Stage 3d: Prior distributions of the Hyperparame-
ters for Degrees of Freedom

νa ∼ Gamma(a4, b4) and νb ∼ IGamma(a5, b5).(3.14)

Stage 3e: Prior distribution for Fixed Effects Re-
gression Coefficients

β ∼ Np(0, c3Ip),(3.15)

where p =
∑J

j=1 pj .
The multivariate meta-regression model defined in (3.3),

(3.4), (3.6), (3.7), (3.9), and (3.10) is very general and flexi-
ble, and it includes as special cases the multivariate normal
meta-regression model, the multivariate t meta-regression
model, and the multivariate skew t meta-regression model.
Furthermore, this proposed model also incorporates the dif-
ferent covariance matrices, skewness parameters, and de-
grees of freedom across the K trials. In the analysis, the
hyperparameters of the prior distribution at Stage 3 were
specified as c1 = 100, c2 = 100, c3 = 100, d1 = qj + 0.1,
S1 = 0.1, d2 = J + 0.1, S2 = 0.1, a1 = 1, b1 = 0.1,
a2 = 0.1, b2 = 0.1, a3 = 1, b3 = 0.1, a4 = 1, b4 = 0.1,
a5 = 0.1, and b5 = 0.1. These choices of the hyperparam-
eters lead to noninformative priors. The flow diagram of
the proposed model is given in Figure 1. Simultaneous es-
timation of all parameters is not easy and requires a so-
phisticated and computationally intensive MCMC sampling
algorithm.

3.3 The likelihood function and posterior
distribution

Let Xik = diag(x′
i1k, . . . , x

′
iJk), Wik = diag(w′

ik, . . . ,
w′

ik), β = (β′
1, . . . , β′

J)
′, γ = (γ′

1, . . . , γ′
J)

′, δ∗ =
(δ′1, . . . , δ′K), Σ∗ = (Σ1, . . . ,ΣK), ν∗ = (ν1, . . . , νK)′,
γR
k = (γ′

1k, . . . ,γ
′
Jk)

′
, and ψ = (ψ11, . . . , ψnKK)′. Also

let yik = (yi1k, ..., yiJk)
′, y = (y′

11, . . . , y′
nKK)′, W =

(W11, . . . ,WnKK), andX = (X11, . . . , XnKK). Furthermore,
we let Dobs = (y, X,W ) denote the observed data. Then the
complete-data likelihood function is given by

L(β,γ, δ∗,Σ∗,ν∗, τ,Ω,γR, z,ψ,λ|Dobs)

=

K∏
k=1

nk∏
i=1

f(yik|β, δk,Σk,γ
R
k , zik, λik, Xik,Wik)
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Figure 1. Flow Diagram of the Proposed Model.

×
(
νk

2

) νk
2

Γ
(
νk

2

) λ νk
2 −1

ik exp
{
−νk

2
λik

}

×
K∏

k=1

nk∏
i=1

⎡
⎣ J∏
j=1

ψik exp (−ψikzijk)

⎤
⎦

× τ τ+1

Γ (τ + 1)
ψτ
ik exp {−τψik}

×
K∏

k=1

J∏
j=1

(2π)−
4
2 |Ωj |−

1
2

× exp

{
−1

2
(γjk − γj)

′Ω−1
j (γjk − γj)

}
,(3.16)

where f(yik|β,Δk,Σk,γ
R
k , zik, λik, Xik,Wik) = |Σk|−1/2

(2π)J/2

λ
J/2
ik exp

{
− λik

2 (yik −Xikβ −Wikγ
R
k −Δkz

∗
ik)

′Σ−1
k (yik −

Xikβ − Wikγ
R
k − Δkz

∗
ik)
}
with z∗

ik = zik − E[zik], Δk =
diag(δ1k, . . . , δJk), Ω = diag(Ω1, . . . ,ΩJ), z = (z′

11, . . . ,
z′
nKK)′, γR = ((γR

1 )
′, . . . , (γR

K)′)′, and λ = (λ11, . . . ,
λnKK). Then using the complete-data likelihood function
in (3.16) and prior distributions in Section 3.2, the joint
posterior distribution of all the parameters is given by

π(β,γ, δ∗, δ,σ2
δ ,Σ

∗, υ,Σ,ν∗, νa, νb, τ,Ω,γ
R, z,ψ,λ|Dobs)

∝ L(β,γ, δ∗,Σ∗,ν∗, τ,Ω,γR, z,ψ,λ|Dobs)

× π(β)π(γ), π(δ∗|δ,σ2
δ)π(δ)π(σ

2
δ)

× π(Σ∗|υ,Σ)π(υ)π(Σ)π(Ω)
× π(ν∗|νa, νb)π(νa)π(νb)π(τ).

(3.17)

4. BAYESIAN INFERENCE

4.1 Bayesian model comparison via CPO’s

Given the rich specification of our proposed model, it
is of interest to compare the performance of various spe-
cial cases of the general multivariate skew meta-regression
model proposed in Section 3.2. That is, we need methods for
checking whether a skew and/or heavy-tailed distribution is
needed for modeling the yik’s. Also, we need to investigate
whether the skewness, variance, and degrees of freedom are
varying across trials. To this end, we carry out the model
comparison using the logarithm of pseudo-marginal likeli-
hood (LPML) proposed by Ibrahim et al. (2001). The LPML
is a well-established Bayesian model comparison criterion
based on the conditional predictive ordinate (CPO) statis-
tic. The CPO statistic for the ith subject in the kth trial
is the marginal posterior predictive density of yik. As sug-
gested in Ibrahim et al. (2001), a natural summary statistic
of the CPOik’s is the LPML defined as

LPML =

K∑
k

I∑
i

log (CPOik) .(4.1)

We use LPML as a criterion-based measure for model
selection. The larger the LPML, the better the fit of a
given model. From (3.16), the marginal likelihood function
is given by

f(yik | β, δk,Σk,γ
R
k , τ, νk, Xik,Wik)

=

∫
λik∈R+

∫
ψik∈R+

∫
zik∈RJ

+

f(yik | β, δk,Σk,γ
R
k , zik,

λik, Xik,Wik)
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×
J∏

j=1

[
ψik exp{−ψikzijk}dzik

× τ τ+1

Γ(τ + 1)
ψτ
ik exp{−τψik}dψik

]

×
(νk

2 )
νk
2

Γ(νk

2 )
λ

νk
2 −1

ik exp{−νk
2
λik}dλik

=
|Σk|−

1
2

π
J
2

Γ(νk+J
2 )

Γ(νk

2 )
ν

νk
2

k

Γ(τ + J + 1)

Γ(τ + 1)
τ τ+1

×
∫
zik∈RJ

+

(Aik + νk)
− νk+J

2

(
J∑

j=1

zijk + τ

)−(J+τ+1)

dzik,

(4.2)

where Aik =
(
yik − Xik β − Wik γR

k − Δk z∗
ik)

′

Σ−1
k (yik − Xik β − Wik γR

k − Δk z∗
ik

)
. Let θ =

(β,γ, δ∗, δ,σ2
δ ,Σ

∗, υ,Σ,ν∗, νa, νb, τ,Ω,γ
R) denote the col-

lection of parameters and the random effects. Let D
(−ik)
obs

denote the observed data with the ith patient in the kth
trial deleted. Let Θ and Z be the parameter spaces cor-

responding to θ and z, respectively. Also let π(θ | D(−ik)
obs )

denote the posterior of θ given D
(−ik)
obs . The following propo-

sition gives a computational form of the CPO statistic.

Proposition 4.1. Let hik(zik) be a normalized weight func-
tion satisfying

∫
RJ

+
hik(zik)dzik = 1. For the ith patient in

the kth trial, CPOik can be written as

CPOik =

∫
Θ

f(yik | β, δk,Σk,γ
R
k , τ, νk, Xik,Wik)

× π(θ | D(−ik)
obs )dθ

=

[∫
Θ

∫
Z
fyik,zik × π(θ, z | Dobs)dzdθ

]−1

,(4.3)

where fyik,zik = hik(zik)

f(yik,zik|β,δk,Σk,γR
k ,τ,νk,Xik,Wik)

and f(yik,

zik | β, δk, Σk, γ
R
k , τ , νk, Xik, Wik) =

(
Aik + νk

)− νk+J

2(∑J
j=1 zijk + τ

)−(J+τ+1) |Σk|−
1
2

π
J
2

Γ(
νk+J

2 )

Γ(
νk
2 )

ν
νk
2

k
Γ(τ+J+1)
Γ(τ+1) τ τ+1.

The proof of this proposition is given in Appendix A.

Remark 4.1. Using the CPO Identity I in Zhang et al.
(2017), CPOik can be written as

CPOik =
1∫

Θ
1

f(yik|β,δk,Σk,γR
k ,τ,νk,Xik,Wik)

π(θ|Dobs)dθ
,

where f(yik | β, δk, Σk, γ
R
k , τ , νk, Xik, Wik) is given in

(4.2). This identity requires a J-dimensional integration over
RJ

+. Compared to the CPO identity I, (4.3) is more compu-
tationally attractive.

Remark 4.2. The CPOik given in (4.3) uses the CPO Iden-

tity II in Zhang et al. (2017). Now, let {(θ(b), z(b)), b =
1, ..., B} denote a Gibbs sample of (θ, z) from π(θ, z | Dobs).
Using Proposition 4.1, a Monte Carlo estimator of CPOik

in (4.3) is given by

̂CPOik = B

[
B∑

b=1

f (b)
yik,zik

]−1

,(4.4)

where f
(b)
yik,zik =

hik(z
(b)
ik )

f(yik,z
(b)
ik |β(b),δ

(b)
k ,Σ

(b)
k ,(γR

k )(b),τ (b),ν
(b)
k ,Xik,Wik)

.

The Monte Carlo error of ̂CPOik given in (4.4) depends
on the choice of the weight function hik(zik). Following The-
orem 1 in Zhang et al. (2017), the optimal weight function
is defined as the weight function minimizing the variance of
the Monte Carlo estimator. Here, we have

hik,opt(zik) =
f(yik, zik | β, δk,Σk,γ

R
k , τ, νk, Xik,Wik)

f(yik | β, δk,Σk,γR
k , τ, νk, Xik,Wik)

.

(4.5)

However, the optimal weight function is not analytically
available and difficult to compute since the denominator in-
volves a J-dimensional integration. We can, instead, use a
multivariate normal density as a possible choice of hik(zik),
which is constructed via the Laplace approximation to
the joint density f(yik, zik | β, δk,Σk,γ

R
k , τ, νk, Xik,Wik).

Let uik = log(zik) for i = 1, ..., nk, k = 1, ...,K, then
zik = exp(uik). Here, log and exp functions applied to a
vector means that the operations are applied to every ele-
ment of the vector. Denote g(uik) = log

{
f(yik, exp(uik) |

β, δk,Σk,γ
R
k , τ, νk, Xik,Wik)

∏J
j=1 exp(uijk)

}
. Let u0

ik be
the stationary point, where ∇g(uik) = 0, and B =
−∇2g(uik)|u=u0

ik
. Then, the optimal weight function

hik,opt(zik) is approximately given by
f(log(zik)|u0

ik,B
−1)∏J

j=1 zijk
,

where f(·|u0
ik, B

−1) denotes the density of a N(u0
ik, B

−1)
distribution. A detailed derivation of this approximated op-
timal weight function is given in Appendix B.

4.2 Computational development

We consider the following one-to-one transformations:
γ∗R
k =

(
γ∗′

1k,γ
∗′
2k, . . . ,γ

∗′
Jk

)′
= γR

k − γ and δ∗k =(
δ∗′1k, δ

∗′
2k, . . . , δ

∗′
Jk

)′
= δk − δ for k = 1, . . . ,K. Thus,

γ∗
jk = γjk − γj and δ∗jk = δjk − δj for j = 1, . . . , J

and k = 1, . . . ,K. Write γ∗R = ((γ∗R
1 )′, . . . , (γ∗R

K )′)′ and
δ∗∗ = (δ∗

′
1, . . . , δ

∗′
K). Let Δ∗

k = diag(δ∗1k, . . . , δ
∗
Jk) and Δ =

diag(δ1, . . . , δJ). Also, let X∗
ik = (Xik,Wik) for i = 1, . . . , n

and k = 1, . . . ,K and θ = (β′,γ′)′. We present a detailed
development of the MCMC sampling algorithm. Although
the analytic evaluation of the joint posterior distribution
of (θ, δ∗∗, δ,σ2

δ ,Σ
∗, υ,Σ,ν∗, νa, νb, τ,Ω,γ

∗R, z,ψ,λ) based
on the observed data Dobs given in Equation (3.17) is not
possible, the proposed model allows us to develop an ef-
ficient MCMC sampling algorithm to sample from (3.17).
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The MCMC sampling algorithm requires sampling from the
following full conditional distributions in turn: (i) [γ∗R, θ,
δ∗∗, δ, σ2

δ | Σ∗, υ, Σ, ν∗, νa, νb, τ , Ω, z, ψ, λ, Dobs]; (ii) [λ,
ν∗, νa, νb | θ, δ∗∗, δ, σ2

δ , Σ
∗, υ, Σ, τ , Ω, γ∗R, z, ψ, Dobs];

(iii) [Σ∗, υ, Σ | θ, δ∗∗, δ, σ2
δ , ν

∗, νa, νb, τ , Ω, γ
∗R, z, ψ,

λ, Dobs]; (iv) [z | θ, δ∗∗, δ, σ2
δ , Σ

∗, υ, Σ, ν∗, νa, νb, τ , Ω,
γ∗R, ψ, λ, Dobs]; (v) [ψ, τ | θ, δ∗∗, δ, σ2

δ , Σ
∗, υ, Σ, ν∗,

νa, νb, Ω, γ
∗R, z, λ, Dobs]; and (vi) [Ω | θ, δ∗∗, δ, σ2

δ , Σ
∗,

υ, Σ, ν∗, νa, νb, τ , γ
∗R, z, ψ, λ, Dobs]. For (i), we apply

the collapsed Gibbs technique of Liu (1994) and Chen et al.
(2000) through the identity

[γ∗R,θ, δ∗∗, δ,σ2
δ | Σ∗, υ,Σ,ν∗, νa, νb, τ,Ω, z,ψ,λ, Dobs]

= [γ∗R | θ, δ∗∗, δ,σ2
δ ,Σ

∗, υ,Σ,ν∗, νa, νb, τ,Ω, z,ψ,λ, Dobs]

× [δ∗∗ | θ, δ,σ2
δ ,Σ

∗, υ,Σ,ν∗, νa, νb, τ,Ω, z,ψ,λ, Dobs]

× [θ, δ,σ2
δ | Σ∗, υ,Σ,ν∗, νa, νb, τ,Ω, z,ψ,λ, Dobs].

(4.6)

That is, we sample δ∗∗ after collapsing out γ∗R, and also
sample θ, δ, and σ2

δ after collapsing out γ∗R and δ∗∗. For
(ii), we apply the collapsed Gibbs technique of Liu (1994)
and Chen et al. (2000) through the identity

[λ,ν∗, νa, νb | θ, δ∗∗, δ,σ2
δ ,Σ

∗, υ,Σ, τ,Ω,γ∗R, z,ψ, Dobs]

= [λ|θ, δ∗∗, δ,σ2
δ ,Σ

∗, υ,Σ,ν∗, νa, νb, τ,Ω,γ
∗R, z,ψ, Dobs]

× [νb | θ, δ∗∗, δ,σ2
δ ,Σ

∗, υ,Σ,ν∗, νa, τ,Ω,γ
∗R, z,ψ, Dobs]

× [ν∗, νa | θ, δ∗∗, δ,σ2
δ ,Σ

∗, υ,Σ, τ,Ω,γ∗R, z,ψ, Dobs].

(4.7)

That is, we sample νb after collapsing out λ, and also sample
ν∗ and νa after collapsing out λ and νb. For (iii), we apply
the collapsed Gibbs technique of Liu (1994) and Chen et al.
(2000) through the identity

[Σ∗, υ,Σ | θ, δ∗∗, δ,σ2
δ ,ν

∗, νa, νb, τ,Ω,γ
∗R, z,ψ,λ, Dobs]

= [Σ∗ | θ, δ∗∗, δ,σ2
δ , υ,Σ,ν

∗, νa, νb, τ,Ω,γ
∗R, z,ψ,λ, Dobs]

× [υ,Σ | θ, δ∗∗, δ,σ2
δ ,ν

∗, νa, νb, τ,Ω,γ
∗R, z,ψ,λ, Dobs].

(4.8)

That is, we sample υ and Σ after collapsing out Σ∗. For (v),
we apply the collapsed Gibbs technique of Liu (1994) and
Chen et al. (2000) through the identity

[ψ, τ | θ, δ∗∗, δ,σ2
δ ,Σ

∗, υ,Σ,ν∗, νa, νb,Ω,γ
∗R, z,λ, Dobs]

= [ψ | θ, δ∗∗, δ,σ2
δ ,Σ

∗, υ,Σ,ν∗, νa, νb, τ,Ω,γ
∗R, z,λ, Dobs]

× [τ | θ, δ∗∗, δ,σ2
δ ,Σ

∗, υ,Σ,ν∗, νa, νb,Ω,γ
∗R,ψ, z,λ, Dobs].

(4.9)

All the full conditional distributions discussed above
are presented in Section S1 of the Supplementary Ma-
terials (http://intlpress.com/site/pub/files/ supp/sii/2020/
0013/0004/SII-2020-0013-0004-s004.pdf).

5. ANALYSIS OF THE CHOLESTEROL
DATA

We re-analyze the cholesterol data discussed in Section
2. In (3.3), xijk consists of 14 covariates, including bl−ldlc,
bl−hdlc, bl−tg, BMI, age, duration, Female, DM, CHD, po-
tency2, potency3, black, hispanic, and other, as well as 14
interaction terms between the 14 covariates and onstatin as
in Ibrahim et al. (2019). We model these three outcome vari-
ables LDL-C, HDL-C, and TG jointly via (3.3), (3.4), (3.5),
and (3.6) with J = 3 and K = 26 in conjunction with the
models specified at Stage 2 and the priors specified at Stage
3. We standardized all the fourteen covariates for numerical
stability in the posterior computations.

As shown in Ibrahim et al. (2019), the multivariate skew
meta-regression model with an unstructured covariance ma-
trix for the multivariate outcome variables outperformed the
symmetric normal and t models as well as the skew models
with a diagonal covariance matrix. Thus, for the cholesterol
data, we only fit the flexible multivariate meta-regression
models defined by (3.3), (3.4), (3.5), and (3.6) with different
fixed values of τ in (3.6) and random τ with prior specified in
(3.13). We also consider different fixed values of νa in (3.10)
and random νa with a prior specified in (3.14). In total, we
consider 14 different models, including the one, which was
the best model considered in Ibrahim et al. (2019), and the
values of LPML are reported in Table 1. We see, from Table
1, that the LPML values under the proposed flexible skew
t models are greater than the one (LPML = −262517.61)
under the skew t model with τ = 30 (Ibrahim et al. 2019).
The best flexible skew t model is the one with random νa
and τ , which has LPML = −261321.15 while the second
best model is the one with νa = 25 and τ = 5. The values
of LPML for these models are −261321.15 and −261322.38,
which are very close.

Table 1. Values of LPML Measure under Various Models for the Cholesterol Data

Flexible skew t model
τ = 5 τ = 10 τ = 20 τ = 30 random νa & τ

νa = 20 -261324.67 -261391.54 -261423.48 -261455.18 -261321.15
νa = 25 -261322.38 -261346.60 -261413.49 -261448.32
νa = 30 -261323.05 -261358.94 -261415.45 -261450.02

skew t model with τ = 30
-262517.61
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Figure 2. Boxplots of the λ∗
k’s from the posterior distribution under flexible skew model with random φ and τ for the

cholesterol data.

Table 2. Posterior Estimates under the flexible skew t model with random νa and τ for LDL-C

Par. Mean SD 95% HPD

bl−ldlc β1,1 -0.031 0.003 (-0.037, -0.025)
bl−hdlc β1,2 0.013 0.009 (-0.005, 0.032)
bl−tg β1,3 0.007 0.001 (0.004, 0.010)
BMI β1,4 0.069 0.017 (0.035, 0.102)
age β1,5 -0.144 0.009 (-0.162, -0.126)
duration β1,6 0.338 0.282 (-0.217, 0.895)
Female β1,7 -1.239 0.206 (-1.621, -0.812)
DM β1,8 -2.315 0.278 (-2.853, -1.769)
CHD β1,9 0.258 0.270 (-0.301, 0.763)
potency2 β1,10 -7.319 0.327 (-7.954, -6.669)
potency3 β1,11 -15.738 0.375 (-16.438, -14.968)
Black β1,12 2.220 0.394 (1.433, 2.975)
Hispanic β1,13 0.397 0.456 (-0.519, 1.269)
Other β1,14 -2.077 0.490 (-3.046, -1.146)
onstatin × bl−ldlc β1,15 -0.058 0.007 (-0.072, -0.045)
onstatin × bl−hdlc β1,16 -0.074 0.017 (-0.109, -0.041)
onstatin × bl−tg β1,17 -0.005 0.003 (-0.011, 0.001)
onstatin × BMI β1,18 -0.068 0.034 (-0.135, -0.004)
onstatin × age β1,19 0.108 0.018 (0.074, 0.145)
onstatin × duration β1,20 0.155 0.633 (-1.087, 1.398)
onstatin × Female β1,21 2.722 0.396 (1.956, 3.497)
onstatin × DM β1,22 -0.654 0.478 (-1.598, 0.281)
onstatin × CHD β1,23 -0.862 0.504 (-1.855, 0.106)
onstatin × potency2 β1,24 6.144 0.655 (4.873, 7.431)
onstatin × potency3 β1,25 13.924 0.835 (12.336, 15.597)
onstatin × Black β1,26 -2.630 0.851 (-4.272, -0.953)
onstatin × Hispanic β1,27 -2.094 1.020 (-4.151, -0.139)
onstatin × Other β1,28 3.108 0.962 (1.213, 4.981)

We extend λ∗
k in (3.2) to

(5.1) λ∗
k = (λk − nk)/(nk/(νk/2))

1/2

to account for different degrees of freedom for the kth trial
under the proposed flexible skew meta-regression model.
Figure 2 shows the boxplots of the λ∗

k’s defined in (5.1) un-
der the flexible skew t model random νa and τ . The boxplots

of the λ∗
k’s under the flexible skew t model with νa = 25 and

τ = 5 are shown in Figure S.1 of the Supplementary Mate-
rials. We see from Figure 2 and Figure S.1 that all of these
boxplots had a median close to zero and no obvious outlying
trials were found from these two figures. These two figures
are quite different than Figure 2 of Ibrahim et al. (2019), in
which boxplots corresponding to trials 8 and 25 were quite
different than the rest of the 24 boxplots and these boxplots
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Table 3. Posterior Estimates under the flexible skew t model with random νa and τ for HDL-C

Par. Mean SD 95% HPD

bl−ldlc β2,1 0.002 0.003 (-0.004, 0.008)
bl−hdlc β2,2 -0.197 0.010 (-0.217, -0.178)
bl−tg β2,3 0.024 0.001 (0.021, 0.027)
BMI β2,4 -0.145 0.017 (-0.179, -0.112)
age β2,5 0.075 0.009 (0.057, 0.094)
duration β2,6 0.065 0.063 (-0.057, 0.190)
Female β2,7 0.523 0.212 (0.114, 0.941)
DM β2,8 -2.270 0.278 (-2.819, -1.728)
CHD β2,9 -0.985 0.273 (-1.536, -0.465)
potency2 β2,10 0.790 0.317 (0.176, 1.424)
potency3 β2,11 0.256 0.367 (-0.445, 0.989)
Black β2,12 -2.448 0.371 (-3.187, -1.730)
Hispanic β2,13 -1.097 0.449 (-1.972, -0.211)
Other β2,14 -0.050 0.504 (-1.051, 0.920)
onstatin × bl−ldlc β2,15 -0.007 0.005 (-0.017, 0.003)
onstatin × bl−hdlc β2,16 -0.006 0.014 (-0.035, 0.021)
onstatin × bl−tg β2,17 -0.016 0.002 (-0.020, -0.011)
onstatin × BMI β2,18 0.027 0.027 (-0.026, 0.081)
onstatin × age β2,19 -0.059 0.014 (-0.088, -0.031)
onstatin × duration β2,20 -0.245 0.194 (-0.638, 0.128)
onstatin × Female β2,21 0.786 0.324 (0.161, 1.427)
onstatin × DM β2,22 1.719 0.390 (0.914, 2.462)
onstatin × CHD β2,23 0.464 0.395 (-0.299, 1.248)
onstatin × potency2 β2,24 -1.052 0.526 (-2.094, -0.029)
onstatin × potency3 β2,25 -0.946 0.643 (-2.176, 0.338)
onstatin × Black β2,26 2.571 0.634 (1.328, 3.819)
onstatin × Hispanic β2,27 -0.436 0.769 (-1.967, 1.038)
onstatin × Other β2,28 -0.895 0.742 (-2.300, 0.579)

were much more heterogenous than those in Figures 2 and
Figure S.1 under the proposed models. Thus, the outlying
trials identified in Ibrahim et al. (2019) could be due to a
lack of fit.

The posterior estimates, including posterior means, pos-
terior standard deviations (SDs), and 95% highest posterior
density (HPD) intervals of the parameters under the flex-
ible skew t model with random νa and τ are reported in
Tables 2–6 and Tables S.1–S.3. Those posterior estimates
under the flexible skew t model with νa = 25 and τ = 5 are
reported in Tables S.4–S.11 of the Supplementary Materials.
The posterior means and the 95% HPD intervals of the 28
regression coefficients in Tables 2–4 (or Tables S.4–S.6) un-
der the proposed flexible skew models and the skew t model
with τ = 30 (Ibrahim et al., 2019) are also plotted in Fig-
ure 3 and Figure S.2 of the Supplementary Materials. We
call a posterior estimate “statistically significant at a signif-
icance level of 0.05” if the corresponding 95% HPD interval
does not contain 0. Under this notion, we see from Figures
2 and S.2 that significant posterior estimates are consistent
between the proposed model and the model of Ibrahim et al.
(2019) for most of the regression coefficients except for a few
coefficients. For example, for LDL-C, onstatin × DM (β1,22)
was not significant with 95% HPD intervals (-1.598, 0.281)
and (-1.553, 0.322) under the proposed models with random

νa and τ (Table 2) and with νa = 25 and τ = 5 (Table S.4),
respectively, while it was significant with 95% HPD interval
(-2.088, -0.225) under the skew t model with τ = 30 (Table 7
of Ibrahim et al. (2019)). For HDL-C, onstatin × potency2
(β2,24) was nearly significant with HPD intervals (-2.094,
-0.029) and (-2.053, 0.000) under the proposed models with
random νa and τ (Table 3) and with νa = 25 and τ = 5
(Table S.5), respectively, while it was not significant with
95% HPD interval (-1.955, 0.068) under the skew t model
with τ = 30 (Table 8 of Ibrahim et al. (2019)). For TG,
onstatin × duration (β3,20) was not significant with HPD
intervals (-0.242, 1.380) and (-0.215, 1.390) under the pro-
posed models with random νa and τ (Table 4) and with
νa = 25 and τ = 5 (Table S.6), respectively, while it was
significant with 95% HPD interval (0.227, 1.539) under the
skew t model with τ = 30 (Table 9 of Ibrahim et al. (2019)).
Therefore, different models may identify different sets of sig-
nificant covariates. Since the proposed flexible skew model
fits the cholesterol data much better than the skew t model
with τ = 30, the latter model may potentially incorrectly
identify the association between the outcome variables and
covariates, yielding a misleading conclusion in terms of the
clinical importance of covariates.

The results shown in Table 5 under the flexible skew
model with random νa and τ , Table S.7 under the flexi-
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Table 4. Posterior Estimates under the flexible skew t model with random νa and τ for TG

Par. Mean SD 95% HPD

bl−ldlc β3,1 -0.002 0.006 (-0.013, 0.009)
bl−hdlc β3,2 0.030 0.017 (-0.002, 0.063)
bl−tg β3,3 -0.093 0.003 (-0.098, -0.088)
BMI β3,4 0.237 0.029 (0.181, 0.295)
age β3,5 -0.032 0.016 (-0.064, 0.000)
duration β3,6 -0.186 0.182 (-0.566, 0.140)
Female β3,7 2.570 0.361 (1.879, 3.279)
DM β3,8 -0.549 0.480 (-1.465, 0.417)
CHD β3,9 0.680 0.471 (-0.243, 1.591)
potency2 β3,10 -4.303 0.572 (-5.422, -3.179)
potency3 β3,11 -9.458 0.666 (-10.775, -8.178)
Black β3,12 -1.997 0.665 (-3.334, -0.744)
Hispanic β3,13 1.045 0.805 (-0.512, 2.615)
Other β3,14 -1.012 0.838 (-2.697, 0.573)
onstatin × bl−ldlc β3,15 0.015 0.010 (-0.004, 0.036)
onstatin × bl−hdlc β3,16 -0.093 0.028 (-0.150, -0.039)
onstatin × bl−tg β3,17 -0.026 0.005 (-0.036, -0.017)
onstatin × BMI β3,18 0.038 0.054 (-0.064, 0.146)
onstatin × age β3,19 0.096 0.029 (0.040, 0.153)
onstatin × duration β3,20 0.605 0.413 (-0.242, 1.380)
onstatin × Female β3,21 0.262 0.639 (-0.975, 1.513)
onstatin × DM β3,22 2.221 0.766 (0.715, 3.684)
onstatin × CHD β3,23 0.922 0.804 (-0.690, 2.482)
onstatin × potency2 β3,24 3.468 1.063 (1.384, 5.549)
onstatin × potency3 β3,25 6.237 1.302 (3.623, 8.732)
onstatin × Black β3,26 -1.101 1.316 (-3.662, 1.482)
onstatin × Hispanic β3,27 0.896 1.603 (-2.240, 4.007)
onstatin × Other β3,28 3.854 1.458 (1.039, 6.738)

Table 5. Posterior Estimates under the flexible skew t model with random νa and τ

Par. Mean SD 95% HPD Par. Mean SD 95% HPD

γ1,0 -22.112 3.034 (-28.094, -16.127) Ω1,0,0 20.133 10.345 (6.526, 39.943)
γ1,1 -14.129 0.827 (-15.748, -12.455) Ω1,0,1 -9.158 5.367 (-19.859, -1.405)
γ1,2 6.229 4.290 (-2.232, 14.651) Ω1,1,1 8.197 3.900 (2.791, 15.742)
γ1,3 -19.107 1.410 (-21.849, -16.293) Ω1,2,2 43.791 21.636 (13.970, 84.722)
γ2,0 9.918 1.354 (7.291, 12.594) Ω1,2,3 -26.458 14.770 (-54.154, -5.612)
γ2,1 2.111 0.430 (1.265, 2.956) Ω1,3,3 24.157 12.438 (7.482, 47.977)
γ2,2 13.850 1.818 (10.345, 17.446) Ω2,0,0 1.957 1.085 (0.530, 4.033)
γ2,3 1.256 0.260 (0.763, 1.773) Ω2,0,1 -1.734 0.990 (-3.616, -0.395)
γ3,0 -1.626 2.679 (-6.795, 3.708) Ω2,1,1 1.680 0.992 (0.344, 3.587)
γ3,1 -5.918 0.704 (-7.304, -4.523) Ω2,2,2 1.182 0.817 (0.121, 2.657)
γ3,2 4.180 3.665 (-2.717, 11.540) Ω2,2,3 -0.188 0.355 (-0.930, 0.366)
γ3,3 -7.923 0.738 (-9.373, -6.448) Ω2,3,3 0.137 0.161 (0.007, 0.419)
Σ11 72.921 4.189 (64.870, 81.231) Ω3,0,0 9.561 6.304 (1.245, 21.757)
Σ12 13.629 3.067 (7.729, 19.587) Ω3,0,1 -6.229 4.040 (-14.125, -0.545)
Σ13 22.812 4.459 (14.018, 31.508) Ω3,1,1 4.463 3.107 (0.218, 10.459)
Σ22 96.721 5.193 (86.786, 107.018) Ω3,2,2 9.301 5.919 (1.423, 20.324)
Σ23 -37.165 5.046 (-47.266, -27.514) Ω3,2,3 -5.427 4.046 (-13.380, -0.181)
Σ33 182.385 10.700 (161.945, 203.932) Ω3,3,3 3.574 3.221 (0.017, 9.468)
δ1 9.651 0.612 (8.438, 10.865) σ2

δ1
8.242 3.181 (3.345, 14.545)

δ2 -1.522 0.189 (-1.907, -1.166) σ2
δ2

0.154 0.133 (0.016, 0.403)
δ3 19.112 0.820 (17.518, 20.752) σ2

δ3
13.696 5.151 (5.273, 23.948)

φ 19.672 8.486 (6.197, 36.399) ν0 33.921 4.472 (25.751, 43.207)
v 7.863 0.523 (6.886, 8.926) τ 4.350 0.290 (3.787, 4.914)
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Table 6. Posterior Estimates under the flexible skew t model with random νa and τ

Par. Mean SD 95% HPD Par. Mean SD 95% HPD

v1 7.789 1.189 (5.593, 10.179) v14 7.208 0.961 (5.508, 9.191)
v2 8.694 1.554 (5.998, 11.880) v15 5.408 0.619 (4.258, 6.645)
v3 7.511 1.514 (4.649, 10.531) v16 8.761 1.418 (6.285, 11.631)
v4 8.520 1.328 (6.243, 11.313) v17 8.418 1.772 (5.182, 11.890)
v5 9.176 1.536 (6.449, 12.285) v18 9.272 1.730 (6.292, 12.851)
v6 8.560 1.419 (5.989, 11.384) v19 10.479 2.113 (6.847, 14.652)
v7 9.728 1.521 (6.958, 12.749) v20 8.379 1.506 (5.662, 11.390)
v8 7.000 0.581 (5.900, 8.141) v21 6.626 1.067 (4.680, 8.731)
v9 8.150 0.906 (6.412, 9.894) v22 6.671 1.198 (4.527, 9.110)
v10 10.103 1.113 (8.024, 12.286) v23 6.417 1.093 (4.403, 8.575)
v11 7.910 0.978 (6.087, 9.844) v24 7.593 1.362 (5.128, 10.317)
v12 5.809 1.173 (3.609, 8.091) v25 6.825 1.003 (4.937, 8.806)
v13 6.838 1.114 (4.860, 9.160) v26 6.235 0.923 (4.537, 8.080)

ble skew model with νa = 25 and τ = 5, and Table 6 of
Ibrahim et al. (2019) indicate that patients on “statin +
EZE” had significantly more percent changes from baseline
in all three outcome variables (LDL-C, HDL-C, and TG)
than those on statin alone for both the first-line and second-
line therapies. For first-line therapy, the 95% HPD inter-
vals were (-15.771, -12.492), (-15.748, -12.455), and (-15.662,
-12.454) for the percent change from baseline in LDL-C
(γ1,1); (1.265, 2.956), (1.302, 2.952) and (1.285, 2.870) for
the percent change from baseline in HDL-C (γ2,1); and
(-7.304, -4.523), (-7.357, -4.548), and (-7.316, -4.369) for the
percent change from baseline in TG (γ3,1), respectively, un-
der the flexible skew model with random νa and τ , the flex-
ible skew model with νa = 25 and τ = 5, and the skew
model with τ = 30. For second-line therapy, these 95%
HPD intervals were (-21.849, -16.293), (-21.840, -16.260),
and (-21.586, -15.974) for the percent change from baseline
in LDL-C (γ1,3); (0.763, 1.773), (0.740, 1.751), and (0.726,
1.736) for the percent change from baseline in HDL-C (γ2,3);
and (-9.373, -6.448), (-9.306, -6.452), and (-9.213, -5.868) for
the percent change from baseline in TG (γ3,3), respectively,
under the above three models.

Tables 6 and S.8 as well as Figures 4 and S.3 show that
the posterior estimates of the degrees of freedom, vk’s, vary
across trials, with the posterior estimates from 5.408 to
10.479 (Table 6) and 5.452 to 9.778 (Table S.8). Tables S.1
and S.9 and Figures 5 and S.4 indicate that the skewness
parameters, δk,j ’s, are very heterogenous for outcome vari-
ables LDL-C and TG and relatively homogenous for HDL-C
among the 26 trials. Finally, we see from Tables S.2, S.3,
S.10, and S.11 that the magnitudes of the covariances and
the variances are different across these 26 trials, however,
interestingly, the signs of the correlations among the three
outcome variables (LDL-C, HDL-C, and TG) are consis-
tent across trials. These posterior estimates suggest that the
skewness parameters, the covariance matrices of the multi-
variate responses, and the degrees of freedom in the mul-
tivariate t distributions for the error terms should be dif-
ferent across trials, which further empirically confirms the

finding according to the LPML criterion that the flexible
skew model did fit the cholesterol data better than the skew
t model with τ = 30.

To compute posterior estimates, including posterior
means, posterior SDs, 95% HPD intervals, LPMLs, and box-
plots of λ∗

k’s, we used 20,000 MCMC samples, which were
taken from every fifth iteration, after a burn-in of 20,000 it-
erations. The convergence of the MCMC sampling algorithm
was checked using several diagnostic procedures discussed
in Chen et al. (2000). The HPD intervals were computed
via the Monte Carlo method developed by Chen and Shao
(1999). Computer code was written for the FORTRAN 95
compiler using IMSL subroutines with double precision ac-
curacy. The FORTRAN code is available from the authors
upon request.

6. DISCUSSION

In this paper, we have proposed a general and flexible
multivariate skew and heavy-tailed meta-regression model
for modeling individual level patient meta-data, which is
a novel extension of the multivariate skew meta-regression
model of Ibrahim et al. (2019). Due to the complexity of the
proposed model, we have also developed an efficient MCMC
sampling algorithm using the collapsed Gibbs technique of
Liu (1994) and Chen et al. (2000) to carry out challenging
posterior computations due to the large size of the meta-
data and the high-dimensions of the random effects. In addi-
tion, we have proposed the logarithm of the pseudo marginal
likelihood for model comparison. As was seen from the anal-
ysis of the (LDL-C, HDL-C, TG) data, the proposed model
has substantially improved goodness-of-fit over the one de-
veloped in Ibrahim et al. (2019).

An extension to network meta-regression (NMR) of the
proposed model for individual level patient network meta-
data can be developed. Under the network regression set-
ting, multiple treatments are compared using both direct
comparisons of interventions within randomized controlled
trials and indirect comparisons across trials based on a com-
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Figure 3. Plots of the relative posterior estimates (mean/SD and 95% HPD interval/SD) for β under the skew t model with
τ = 30 (blue) and flexible skew model with random νa and τ (red) for the cholesterol data.

mon comparator, accounting for covariates. Such an exten-
sion is potentially useful and significant in comparing and
assessing the effects of cholesterol lowering drugs. A detailed
development of this extension is beyond the scope of the cur-
rent paper.

Supplementary materials available on the journal website
consist of the full conditional distributions, additional tables
(Tables S.1–S.3) of the posterior estimates under the flexible
skewed model with random νa and τ for the cholesterol data,
and the posterior estimates (Table S.4–S.11; Figure S.1–S.4)
under the flexible skewed model with νa = 25 and τ = 5.

APPENDIX

Appendix A. Proof of Proposition 4.1

The CPOik statistic for the ith patient in the kth trial is
defined as

CPOik

=

∫
Θ

f(yik | Xik,Wik,θ)π(θ | D(−ik)
obs )dθ

=

∫
Θ

f (yik | Xik,Wik,θ)
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Figure 4. Plots of the posterior estimates (mean and 95% HPD interval) for νk under the flexible skew model with random νa
and τ for the cholesterol data.

×
f
(
y−ik | X−ik,W−ik,θ

)
π(θ)∫

Θ
f
(
y−ik | X−ik,W−ik,θ

)
π(θ)dθ

dθ

=

∫
Θ

∫
Z

[∏K
k=1

∏nk

i=1 f
A
yik,zik

]
π(θ)∫

Θ
f
(
y−ik | X−ik,W−ik,θ

)
π(θ)dθ

dzdθ,(A.1)

where fA
yik,zik

= f (yik | Xik,Wik,θ, zik)π(zik | τ).
Let Z−ik denote the integration region of z−ik. Note that∫

Θ

f
(
y−ik | X−ik,W−ik,θ

)
π(θ)dθ

=

∫
Θ

∫
Z−ik

f
(
y−ik | X−ik,W−ik,θ, z−ik

)
× π(z−ik|τ)π(θ)dz−ikdθ

=

∫
Θ

∫
Z
hik(zik)f

(
y−ik | X−ik,W−ik,θ, z−ik

)
× π(z−ik|τ)π(θ)dzdθ,(A.2)

where hik(zik) is any weight density function such that∫
zik

hik(zik)dzik = 1, and

f
(
y−ik | X−ik,W−ik,θ, z−ik

)
π(z−ik|τ)

=
1

f (yik | Xik,Wik,θ, zik)π(zik | τ)

×
[

K∏
k=1

nk∏
i=1

f (yik | Xik,Wik,θ, zik)π(zik | τ)
]
.(A.3)

Thus, combining (A.1), (A.2), and (A.3) yields (4.3).

Appendix B. Derivation of an approximation
of the optimal weight function

The optimal weight function is given by

hik,opt(zik)

= f(zik | β, δk,Σk,γ
R
k , τ, νk,yik, Xik,Wik)

=
f(yik, zik|β, δk,Σk,γ

R
k , τ, νk, Xik,Wik)

f(yik | β, δk,Σk,γR
k , τ, νk, Xik,Wik)

=
f(yik, zik | β, δk,Σk,γ

R
k , τ, νk, Xik,Wik)

fM (yik, zik | β, δk,Σk,γR
k , τ, νk, Xik,Wik)

,

where fM (yik, zik | β, δk, Σk, γR
k , τ , νk, Xik, Wik) =∫

zik∈RJ
+
f( yik, zik | β, δk, Σk, γ

R
k , τ , νk, Xik, Wik) dzik.

Let uik = log(zik) for i = 1, ..., nk, k = 1, ...,K, then zik =
exp(uik). We note that the log and exp functions applied
to a vector means that the operations are applied to every
element of the vector. Then, we have

hik,opt(zik) =
fA
yik,uik∫

uik∈RJ fA
yik,uik

×
∏J

j=1 exp(uijk)duik

,

where fA
yik,uik

= f(yik, exp(uik) | β, δk, Σk, γ
R
k , τ , νk, Xik,

Wik), and

hik,opt(zik)

J∏
j=1

exp(uijk)

=
fA
yik,uik

×
∏J

j=1 exp(uijk)∫
uik∈RJ fA

yik,uik
×
∏J

j=1 exp(uijk)duik

.(A.4)

The right hand side of (A.4) can be approximated by
a multivariate normal density which is constructed via
the Laplace approximation to the joint density f(yik,

exp(uik) | β, δk,Σk,γ
R
k , τ, νk, Xik,Wik)

∏J
j=1 exp(uijk). De-

note g(uik) = log
{
f(yik, exp(uik) | β, δk, Σk, γ

R
k , τ , νk,

Xik, Wik)
∏J

j=1 exp(uijk)
}
. Letting u0

ik be the station-

ary point where ∇g(uik) = 0, and B = −∇2g(uik)|u=u0
ik
,

the function hik,opt (zik)
∏J

j=1 exp(uijk) can be approx-

imated by φ
(
log(zik) | u0

ik, B
−1
)
, where φ

(
log(zik) |

u0
ik, B−1

)
denotes the density function of N(uik | u0

ik,
B−1). Thus, hik,opt(zik) is approximated by the function
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Figure 5. Plots of the posterior estimates (mean and 95% HPD interval) for δk under the flexible skew model with random νa
and τ for the cholesterol data.

φ(log(zik)|u0
ik,B

−1)∏J
j=1 zijk

. From equation (4.2), we have

g(uik) = log

⎧⎨
⎩fA

yik,uik
×

J∏
j=1

exp (uijk)

⎫⎬
⎭

∝ −νk + J

2
log (Aik(uik) + νk)

− (J + τ + 1)log

⎛
⎝ J∑

j=1

exp (uijk) + τ

⎞
⎠

+

J∑
j=1

uijk,(A.5)

where Aik(uik) = (yik −Xikβ −Wikγ
R
k −Δk (exp(uik)

−Ezik))
′ Σ−1

k (yik −Xikβ −Wikγ
R
k −Δk (exp(uik)

−Ezik)). Using g(uik) in (A.5), we obtain ∇g(uik) and
∇2g(uik) after some algebra.
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